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Nonlocal thermodynamic equilibrium self-consistent average-atom model for plasma physics
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A time-dependent collisional-radiative average-atom model is presented to study statistical properties of
highly charged ion plasmas in off-equilibrium conditions. The time evolution of electron populations and the
electron covariance matrix is obtained as approximate solutions of a master equation. Atomic structure is
described either with a screened-hydrogenic model includingl splitting, or by calculating one-electron states
in a self-consistent average-atom potential. Collisional and radiative excitation/deexcitation and ionization/
recombination rates, as well as autoionization and dielectronic recombination rates, are formulated within the
average-configuration framework. Local thermodynamic equilibrium is obtained as a specific steady-state
solution. The influence of atomic structure and the role of autoionization and dielectronic recombination
processes are studied by calculating steady-state average ionization and ionization variance of hot plasmas with
or without radiation field.
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I. INTRODUCTION

The properties of hot dense matter are of great importa
in astrophysics or laboratory-plasma physics@1#. Their study
is often difficult because of the extended range of exist
thermodynamic situations. An attractive situation takes pl
when plasmas can be considered in local thermodyna
equilibrium ~LTE!. This occurs when collisional process
between ions and electrons are more important than radia
deexcitation and recombination~provided that microrevers
ibility prevails in particle collisions!. Matter is thus assume
to be in equilibrium for any pair of temperature densiti
defined locally in space. Furthermore, the emission and
sorption coefficients satisfy an equilibrium-type relation.
at least one of the above assumptions does not hold,
medium is said to be in nonlocal thermodynamic equilibriu
~NLTE!.

When LTE conditions fail, the problem at hand shows
great complexity. Since noa priori expressions are availabl
for the electronic configurations, one must resort to find
the statistical distribution of the different ionic states by so
ing the relevant rate equation, or master equation, involv
ions, free electrons, and photons. Even if the level of de
of the ionic structure does not exceed the configuration
scription, the number of selected many-electron configu
tions can be very large. In this situation, known as the
tailed configuration accounting~DCA! method, data are
often lacking or known only for isolated atoms or ions.

One solution is to group levels in configuration sets cal
superconfigurations. Bar-Shalomet al. @2# have used this
kind of statistical approach to take up the NLTE populati
kinetic problem in high-Z plasmas. They have generalize
the LTE supertransition array~STA! approach to calculate
collisional and radiative rates connecting superconfigurati
@3#. However, the basic STA tools, well-defined to perfor
statistical sums in LTE, are questionable in NLTE each ti
ionization temperature is invoked@4#.

Another solution is to extend the average-atom model
malism to NLTE situations@5–7#. By taking into account
various microscopic processes that can alter the shell o
1063-651X/2001/63~2!/026401~13!/$15.00 63 0264
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pations of an electronic configuration, this method consist
going from integer to fractional occupation numbers and
calculating all the transition rates of interest affecting t
configuration under study. The shell-occupation fractio
numbers obey a set of time-dependent nonlinear coup
equations. The system is closed by using the neutrality c
dition. This method seems very attractive and has been
cently proven to be well-defined@8,9#. In short, the master
equation is approximately solved by searching a particu
solution of the density probability distribution. This densi
probability is assumed to be a Gaussian distribution cente
around a reference configuration. The shell-occupation n
bers of this configuration and the symmetric matrix, whi
defines the Gaussian function, satisfy a set of nonlin
coupled time-dependent equations that must be solved
consistently. The reference configuration appears to be id
tical with the heuristic NLTE average-atom configuratio
@5,6#, and the Gaussian distribution allows one to estim
the average value and the standard deviation of any phys
quantity that is an explicit function of electron shell popul
tions. Furthermore, the model is shown to match with
LTE formalism by assuming the principle of detailed ba
ance. This kind of method is surely an important step
wards improving NLTE atomic-physics models used in-li
or off-line in hydrodynamic codes to simulate laser-plas
interaction experiments. However, up to now nothing cle
and of practical interest has been done concerning the
plicit implementation of dielectronic recombination an
autoionization within the average-atom model formalis
The lack of a proper description of these processes has
a major difficulty in a statistical treatment of dielectron
recombination and autoionization@10#. Taking them into ac-
count would be a major improvement of models employed
the context of laboratory-plasma physics.

A simple expression has been recently proposed for th
rates within the screened-hydrogenic model~SHM! @11,12#,
but its accuracy is still unknown and nothing clear has be
done about the calculation of the electron covariance ma
Moreover, most of the average-atom models are based
SHM or use rates calculated by different codes@13#. The
©2001 The American Physical Society01-1
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internal consistency is problematic and these methods h
to be carefully benchmarked. To this end, a NLTE avera
atom model is needed in which one-electron states are c
puted with self-consistent potential for fractional electro
shell populations, rates are expressed within the aver
configuration formalism, and the electron covariance ma
is calculated self-consistently. To our knowledge, the wh
problem has never been undertaken.

This paper is organized as follows. In Sec. II, gene
expressions for the NLTE average atom and the electron
variance matrix, taking into account recombination and au
ionization processes, are deduced from a master equa
written in electronic configuration space. Particular attent
is paid to inherent approximations and shortcomings of
method. In this section, which is devoted to NLTE statisti
mechanics, no assumption is made concerning the treatm
of atomic structure. This is the aim of Sec. III, where t
main quantities involved in NLTE kinetics self-consisten
field calculations, such as atomic structure, avera
configuration energy, one-electron energies, oscilla
strengths and photoionization cross sections, and trans
rates are discussed. In Sec. IV, numerical applicati
are presented and results are discussed. Section V is
conclusion.

II. FORMAL DEVELOPMENTS

A. Collisional-radiative model

The properties of matter are very difficult to study
NLTE conditions because the related formalism is not
strongly settled as in the LTE case. One must resort to u
approximate techniques to handle a NLTE medium. A wid
spread method is to estimate the change of probability o
microscopic state by using the transition rates of the p
cesses that can modify it.

Let us consider a one-component~no mixture! highly
charged ion plasma in which the level of detail of the atom
structure is limited to the DCA approach.Z is the nuclear
charge of the element and (nk) are the electron occupancie
of the Kmax bound orbitals that describe the ion species e
bedded in the plasma. Each orbitalk (1<k<Kmax) has a
degeneracy numberDk (0<nk<Dk). Then we introduce the
probability of an electronic configurationP@(nk),t# and the
transition rateM @(nk),(nk8)# between configurations (nk)
and (nk8). P@(nk),t# depends on time and satisfies a mas
equation,

Ṗ@~nk!,t#52 (
~nk8!Þ~nk!

P@~nk!,t#M @~nk!,~nk8!#

1 (
~nk8!Þ~nk!

P@~nk8!,t#M @~nk8!,~nk!#, ~1!

where the dot denotes a differentiation with respect to ti
and

(
~nk!

[ (
n150

D1

¯ (
nKmax

50

DKmax

.
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Equation~1! is linear with respect to probabilities but is o
ten intractable due to the large number of configurations
transition rates that have to be considered. Nevertheless,
possible to write its formal solution. Let us first define th
vectorP(t),

P~ t !5S ]

P@~nk!,t#
]

D ,

and the matrixM̃ ,

M̃ @~nk!,~nk8!#5M @~nk8!,~nk!#,

where (nk)Þ(nk8). If we assume that

M̃ @~nk!,~nk!#52 (
~nk8!Þ~nk!

M @~nk!,~nk8!#

it is easy to rewrite Eq.~1! as Ṗ(t)5M̃ P(t), which can be

integrated to yieldP(t)5eM̃tP0. P0 involves the initial
probabilities at timet50. M̃ is called the Markov matrix.
When this latter is irreducible~the transition rates are pos
tive!, the zero value is shown to be a nondegenerate eig
value and all the other eigenvalues have a negative real
In plasma physics, this situation arises when collisional io
ization and excitation and their inverse processes~collisional
recombination and deexcitation! are taken into account. Con
sequently, P(t) relaxes to the steady-state distributio
PS: M̃ PS50. If one needs the Gibbs equilibrium distribu
tion defined asPeq to be a steady-state solution of Eq.~1!, it
is then sufficient that the elements of the matrixM̃ satisfy the
detailed balance principle:

M̃ @~nk!,~nk8!#Peq@~nk8!#5M̃ @~nk8!,~nk!#Peq@~nk!#,

where

Peq@~nk!#5F )
k51

Kmax S Dk

nk
D Ge2bE@~nk!#1h(

k51

Kmax

nk.

Here, (nk

Dk) is a binomial coefficient equal toDk!/ @nk!(Dk

2nk)! #, h is related to the chemical potentialm by h
5bm, andb is defined byb51/kBT, wherekB is the Bolt-
zmann constant andT the electron temperature. The fre
electrons are supposed to be in thermal equilibrium. Th
play the role of a reservoir by allowing exchange of ener
and particles between bound and free electrons. The deta
balance principle ensures that each individual proces
time-reversible. It can be shown that the detailed bala
principle originates from the reversibility of the microscop
equations with respect to time. It can be violated if a curr
of matter and/or photons is imposed in an open system.

B. Self-consistent average-atom model

Very often, Eq.~1! is too general to be of practical us
and several assumptions must be introduced to simplify
1-2
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Major ones consist in considering average-configurat
rates @14,15# and in taking into account the radiative an
collisional processes that change the charge state by at
two units. This methodology suits any other process, bu
this paper we will concentrate on the major improvement
showing how autoionization and dielectronic recombinat
naturally enter the average-atom equations and electron
variance matrix. Usual NLTE average-atom models@5,6#
leave out both autoionization and its inverse process,
dielectronic attachment. This fact is known to be a troub
some limitation for application to low-density high-Z plas-
mas, causing systematic errors in predicted ionization st
and electronic populations. At high enough densities,
highly excited electron resulting from dielectronic attac
ment is easily removed by collisional ionization and thre
body recombination is likely to be dominant in any case.
these conditions, it may be reasonable to ignore the die
o

n
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tronic process. Furthermore, since these processes are
electron transitions and induce strong correlations betw
electron populations, their implementation within the fram
work of the average-atom model cannot bypass the simu
neous consideration of the electron covariance matrix@10#.

The derivation is going to be carefully detailed becau
the inherent approximations are essential to understan
the shortcomings of the equations obtained in the end. Mo
over, we found nothing else, but we mention these appro
mations to argue that the SCAALP model discussed in
paper, i.e., self-consistent average-atom for laboratory p
mas, belongs to a larger class of mean-field description
NLTE highly charged ion plasmas. This point recalls t
state of the art in LTE mean-field description of man
particle systems standing on a saddle-point evaluation o
integral representation of a partition function@16–18#. By
doing so, Eq.~1! can be written as
Ṗ@~nk!,t#52(
i , j

P@~nk!,t#ni~D j2nj !t i , j2(
i

P@~nk!,t#ni I i ,c2(
i

P@~nk!,t#Rc,i~Di2ni !

1(
i , j

PF S ]

ni21
]

nj11
]

D ,tG ~nj11!~Di2ni11!t̄ j ,i1(
i

PF S ]

ni11
]

D ,tG ~ni11! Ī i ,c

1(
i

PF S ]

ni21
]

D ,tG ~Di2ni11!R̄c,i2 (
i , j ,m

P@~nk!,t#nm~ni2d i ,m!~D j2nj !Ai , j
m,c

2 (
i , j ,m

P@~nk!,t#~Dm2nm!~Di2ni1d i ,m!njRj ,i
c,m1 (

i , j ,m
P3 S ]

ni21
]

nj11
]

nm21
]

D ,t 4 ~Dm2nm11!

3~Di2ni111d i ,m!~nj11!R̄j ,i
c,m1 (

i , j ,m
P3 S ]

ni11
]

nj21
]

nm11
]

D ,t 4 ~nm11!~ni112d i ,m!~D j2nj11!Āi , j
m,c . ~2!
to
tron

are
Here, t i , j ,I i ,c ,Rc,i , are the one-electron transition rates
excitation~or deexcitation! from subshelli to subshellj, and
of ionization and recombination involving subshelli, respec-
tively. These rates may be radiative or collisional.Ai , j

m,c is the
two-electron autoionization rate of the process in which o
of the electron makes the transition from subshelli to sub-
f

e

shell j while the other electron of subshellm goes to the
continuum.Rj ,i

c,m is the rate of the inverse process. WithI i ,c ,
Rc,i , Ai , j

m,c , andRj ,i
c,m , each configuration can be related

any other configuration by a sequence of at least one-elec
microscopic processes.

The Markov matrix is irreducible and the charge states
1-3
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not evolving independently of each others because ch
states are not directly coupled by microscopic proces
When only the excitation and deexcitation ratest i , j are kept,
the Markov matrix becomes reducible. The relaxation
wards equilibrium is nontrivial and the uniqueness of t
steady-state solution is not guaranted. An overbar means
the corresponding rate is not calculated by using the occu
tion numbers of the reference configuration (nk) but those of
the electronic configuration involved in the specific tran
tion. This point of view of writing the master equation
illustrated on the particular example of the 2p→2s transition
~Fig. 1!. The reference configuration (nk) is 1s2s2p and the
e
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deexcitation rate from the configuration 1s2p2 is written
t̄2p,2s because it is calculated by using the electron popu
tions of configuration 1s2p2; t̄2p,2s is different fromt2p,2s
because the latter is calculated with the electron populat
of the configuration 1s2s2p.

To simplify the developments, fractional occupation nu
bers are used preferentially to integer values. Orbital rel
ation is assumed to play a minor role for the highly charg
ion plasmas under study and the ‘‘law of great number’’
supposed to be valid. Let us notice that the last assumptio
questionable when the subshells are nearly occupied
empty @18,19#. Equation~2! becomes
Ṗ@~nk!,t#52(
i , j

P@~nk!,t#ni~D j2nj !t i , j2(
i

P@~nk!,t#ni I i ,c2(
i

P@~nk!,t#Rc,i~Di2ni !

1(
i , j

PF S ]

ni21
]

nj11
]

D ,tG nj~Di2ni !t j ,i1(
i

PF S ]

ni11
]

D ,tGniI i ,c1(
i

PF S ]

ni21
]

D ,tG ~Di2ni !Rc,i

2 (
i , j ,m

P@~nk!,t#nmni~D j2nj !Ai , j
m,c2 (

i , j ,m
P@~nk!,t#~Dm2nm!~Di2ni !njRj ,i

c,m

1 (
i , j ,m

P3 S ]

ni21
]

nj11
]

nm21
]

D ,t 4 ~Dm2nm!~Di2ni !njRj ,i
c,m1 (

i , j ,m
P3 S ]

ni11
]

nj21
]

nm11
]

D ,t 4 nmni~D j2nj !Ai , j
m,c . ~3!
e
E
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By writing P@(nk),t# as exp$2S@(nk),t#%, all terms that
involve integer changes with respect to occupation numb
are expressed as a Taylor expansion ofP@(nk),t#. Doing so,
we just write the master equation, which is a finite-differen
equation in the electronic configuration space, as a pa
differential equation with respect to shell populations. At t
level of approximation retained in this paper, it is sufficie
to expandS@(nk),t# up to first order. This is equivalent t
expandingP@(nk),t# in Taylor series around some referen
configuration up to second order by neglecting any seco
order differentiation ofS@(nk),t# with respect to occupation
numbers. For example, the energy differences of Fig. 1
DE2s,2p'DẼ2s,2p'«2p2«2s , DE2s'DẼ2s'2«2s , and
DE2p'DẼ2p'2«2p , respectively. The («k) are the first de-
rivatives of the configuration energy calculated by using
occupation numbers of the reference configuration~1s2s2p
in our example! @20#. This point may appear obscure at fir
sight but is perfectly sound and fruitful because the s
consistent-field equations found in the end depend on
approximate differential equation written at this stage.
rs
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-
e

whole family of mean-field description of matter may b
obtained. Our method is consistent with existing LT
average-atom models and is easy to implement since
average-atom populations and electron covariance ma
satisfy uncoupled equations, as will be shown later.

Following previous works@19,21–23#, we are only look-
ing for a particular solution because the master equatio
still difficult to solve exactly, even written as a partial diffe
ential equation of first order with respect to time but of se
ond order with respect to shell populations. For practi
applications, it appears that a Gaussian ansatz forP@(nk),t#,
namely P@(nk),t#'e2(1/2)Sk,lDnk(t)Ukl(t)Dnl (t), is very well
suited. The symmetric matrix@Ukl(t)# is time-dependent and
gives an estimate of the electron covariance-mat
(U21)kl(t)'^Dnk(t)Dnl(t)&. ^A& means the statistical aver
age of the quantityA and Dnk(t)5nk2Nk(t); @Nk(t)# is a
still unknown reference configuration. From now on, if n
ambiguity exists,P@(nk),t#, @Nk(t)#, and@Ukl(t)# are sim-
ply written asP, (Nk), and (Ukl). Moreover, any index rep-
etition means a sum on the index of interest. Starting fr
Eq. ~3!, we have~] i[]/]ni and] i j []2/]ni]nj !
1-4
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Ṗ5@] j P2] i P1 1
2 ~] i i

2 P1] j j
2 P22] i j

2 P!#nj~Di2ni !t j ,i

1~] i P1 1
2 ] i i

2 P!niI i ,c1~2] i P1 1
2 ] i i

2 P!~Di2ni !Rc,i

1@] i P2] j P1]mP1 1
2 ~] i i

2 P1] j j
2 P1]mm

2 P22] i j
2 P

12] im
2 P22] jm

2 P!#nmni~D j2nj !Ai , j
m,c

1@2] i P1] j P2]mP1 1
2 ~] i i

2 P1] j j
2 P1]mm

2 P22] i j
2 P

12] im
2 P22] jm

2 P!#~Dm2nm!~Di2ni !njRj ,i
c,m . ~4!

We then use Ṗ5(ṄlUklDnk2 1
2 DnkU̇klDnl)P, ] i P

5(2DnkUki)P, and ] i j
2 P'(DnkUki)(DnlUl j )P. Occupa-

tion numbers and rates are developed around (Nk). After
changing the index and symmetrizing the terms inDnkDnl ,

FIG. 1. Example of processes involving subshells 2s and 2p of
the reference configuration 1s2s2p: ~a! bound-bound transitions
~b! bound-free transitions.t i , j is the one-electron rate of transitio
i→ j ~excitation or deexcitation!. I i ,c andRc,i are the one-electron
ionization and recombination rates associated with the subshi,
respectively. The overbar means that the corresponding rate is
calculated by using the reference configuration but the configura

involved in the transition of interest~1s2p for R̄c,2s!. The energy
difference with respect to 1s2s2p has been mentioned too.
02640
algebraic manipulations show that the linear terms inDnk
and the quadratic terms inDnkDnl give the evolution equa-
tions for the (Nk) and the (Ukl), respectively.

As for the evolution equations for the reference config
ration (Nk), we find that

Ṅi5Nj~Di2Ni !t j ,i2Ni~D j2Nj !t i , j2NiI i ,c1~Di2Ni !Rc,i

2NmNi~D j2Nj !Ai , j
m,c1NmNj~Di2Ni !Aj ,i

m,c

2NiNm~D j2Nj !Am, j
i ,c 1~Dm2Nm!~Di2Ni !NjRj ,i

c,m

2~Dm2Nm!~D j2Nj !NiRi , j
c,m

1~Di2Ni !~Dm2Nm!NjRj ,m
c,i , ~5!

if the matrix (Ukl) is nonsingular. It should be stressed th
all rates are calculated with the occupation numbers (Nk). In
other words, the (Nk) satisfy the common NLTE average
atom equations@5,6,8#, as long as autoionization and its in
verse process are neglected. However, when these proc
are taken into account, they easily enter within the fram
work of the average-atom model, but in a nontrivial wa
Our mean-field equations differ from the work of Rozsny
@7# because we have four additional terms, namely the
first terms in the second and third lines of Eq.~5!, which are
absent in the heuristic average-atom equations publishe
him recently. There is no reason to suppress them, eve
autoionization may enter with a positive sign and its inve
process with a negative one. Indeed, autoionization invol
three subshells. One electron of subshelli may go into the
continuum while an electron from subshellm goes into sub-
shell j. This process corresponds to the third term in t
second line of Eq.~5!. However, the subshelli of interest
may also be involved in the deexcitation process, hence
presence of the two other terms in the same line@11,12#.

As for the evolution equations for the matrix (Ukl), we
obtain the following result:

ot
n

g as
ost
e

Surpris-
e

2U̇kl5~Uki2Uk j!~Uli 2Ul j !Nj~Di2Ni !t j ,i1UkiUli @NiI i ,c1Rc,i~Di2Ni !#1~Uki2Uk j1Ukm!~Uli 2Ul j 1Ulm!

3@NmNi~D j2Nj !Ai , j
m,c1~Dm2Nm!~Di2Ni !NjRj ,i

c,m#1~Uki2Uk j!] l@Nj~Di2Ni !t j ,i #1~Uli 2Ul j !]k@Nj~Di

2Ni !t j ,i #2Uki] l@NiI i ,c2Rc,i~Di2Ni !#2Uli ]k@NiI i ,c2Rc,i~Di2Ni !#2~Uki2Uk j1Ukm!] l@NmNi~D j2Nj !Ai , j
m,c

2~Dm2Nm!~Di2Ni !NjRj ,i
c,m#2~Uli 2Ul j 1Ulm!]k@NmNi~D j2Nj !Ai , j

m,c2~Dm2Nm!~Di2Ni !NjRj ,i
c,m#. ~6!

Equations~5! and ~6! are both nonlinear in (Nk) and (Ukl) and have to be integrated self-consistently. However, as lon
(Ukl) is nonsingular, Eq.~5! does not contain any term in (Ukl). They can thus be solved one after the other. In the m
general case, evolution equations for (Nk) and (Ukl) are highly coupled since (Ukl) is present in the equation governing th
time evolution of (Nk).

At this stage, one could think that the problem is solved. In fact, it is known that only the inverse matrix of (Ukl)@Ckl
5(U21)kl# has an immediate physical interpretation because it gives an estimate of the electron covariance matrix.
ingly, the evolution equations for (Ckl) are far more simple since they are linear with respect to (Ckl). These equations ar
found from Eq.~6! by using the identity matrix (Ṁ 2152M 21ṀM 21). We get

Ċlm5Blm1Clk]kVm1Cmk]kVl , ~7!

where
1-5
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Vm5~Dm2Nm!Rc,m2NmI m,c1(
i

@Ni~Dm2Nm!t i ,m2Nm~Di2Ni !tm,i #1(
i , j

@~D j2Nj !~Dm2Nm!NiRi ,m
c, j

2NjNm~Di2Ni !Am,i
j ,c #1(

i , j
@2~D j2Nj !~Di2Ni !NmRm,i

c, j 1NjNi~Dm2Nm!Ai ,m
j ,c #1(

i , j
@~Dm2Nm!

3~Di2Ni !NjRj ,i
c,m2NmNi~D j2Nj !Ai , j

m,c# ~8!

and

Blm52Nl~Dm2Nm!tl,m2Nm~Dl2Nl!tm,l1(
i

@NlNm~Di2Ni !Am,i
l,c1~Dl2Nl!~Dm2Nm!NiRi ,m

c,l#

1(
i

@NmNl~Di2Ni !Al,i
m,c1~Dm2Nm!~Dl2Nl!NiRi ,l

c,m#2(
i

@NiNm~Dl2Nl!Am,l
i ,c

1~Di2Ni !~Dm2Nm!NlRl,m
c,i #2(

i
@NiNl~Dm2Nm!Al,m

i ,c 1~Di2Ni !~Dl2Nl!NmRm,l
c,i #

2(
i

@NlNi~Dm2Nm!Ai ,m
l,c1~Dl2Nl!~Di2Ni !NmRm,i

c,l#2(
i

@NmNi~Dl2Nl!Ai ,l
m,c1~Dm2Nm!~Di2Ni !NlRl,i

c,m#

1dlm5
~Dm2Nm!Rc,m1NmI m,c1(

i
@Ni~Dm2Nm!t i ,m1Nm~Di2Ni !tm,i #

1(
i , j

@~D j2Nj !~Dl2Nl!NiRi ,l
c,i 1NjNl~Di2Ni !Al,i

j ,c#

1(
i , j

@~D j2Nj !~Di2Ni !NlRl,i
c, j 1NjNi~Dl2Nl!Ai ,l

j ,c#

1(
i , j

@~Dl2Nl!~Di2Ni !NjRj ,i
c,l1NlNi~D j2Nj !Ai , j

l,c#

6 . ~9!
at

u

th
th
g
tr
el

ter
at
m-
a

p-
he

ot
is,

ma-

e
ark
ap-

al-
In practical applications, only Eqs.~5! and ~7!–~9! must
be solved starting from given initial conditions. Steady-st
solutions are obtained by saying that any term involving
differentiation with respect to time is null. The charge ne
trality of the plasma is ensured by the constraintySk51

KmaxNk

1Z̄*5Z. The average ionizationZ̄* is calculated analyti-
cally:

Z̄* 5
4

Ap

A

rNA
S mekBT

2p\2 D 3/2

F1/2~h!

with

Fa~h!5E
0

`

dx
xa

11ex2h .

A, r, NA , andme are the molar mass, the mass density,
Avogadro number, and the electron mass. Before closing
section, we think it is worthwhile to discuss the followin
points: the Gaussian ansatz for the density probability dis
bution P, its normalization, the consistency of those dev
opments with LTE, and the detailed balance.
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C. Remarks about the Gaussian ansatz

As mentioned above, the Gaussian ansatz made forP is a
natural trick to find an approximate solution of the mas
equation~4! that is consistent, at least formally, with wh
can be found in LTE by replacing the original discrete su
mation in the grand-canonical partition function with
Kmax-dimensional integral, using the Stirling formula to a
proximate the binomial coefficients, and by developing t
action around its minimum up to second order@23#. If this
Gaussian expression forP is well defined in LTE, it is by no
means obvious that the probability distribution may n
sometimes have a second maximum in NLTE. There
therefore, the danger of extrapolating a quadratic approxi
tion far from the reference configuration (Nk). One could
integrate the differential equation~4!, which looks like a
Fokker-Planck equation@8#, to test this assumption on som
specific examples. One could also run intensive benchm
computations using, for example, the superconfiguration
proach@24#.

D. Consistency of SCAALP with LTE and detailed balance

The second point we want to clarify concerns the norm
ization of P. By looking for a solution of the form
1-6
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P@(nk),t#'e2(1/2)Sk,lDnk(t)Ukl(t)Dnl (t), Eq. ~4! is in fact
solved for the non-normalized density probability distrib
tion. The normalization factor is easy to find since it is s
ficient to multiply P by Adet(U)/(2p)Kmax to work with a
density probability distribution normalized to unity. We ca
see that the most general Gaussian ansatz isP@(nk),t#
'A(t)e2(1/2)Sk,lDnk(t)Ukl(t)Dnl (t), where A(t) is some un-
known function. If we inject this expression in Eq.~4!, we
find thatA(t) must be time-independent, and if we imposeP
to be normalized to unity from the beginning,A(t)
5Adet(U)/(2p)Kmax, the only allowed ‘‘trajectories’’ in con-
figuration space are those at constant det(U). This paradox is
easily solved by remembering where Eq.~4! comes from. By
using fractional occupation numbers, invoking the ‘‘law
great numbers,’’ neglecting orbital relaxation, and transfor
ing a finite-difference equation into a differential equatio
we have altered the exactness of the original master equa
~2!. We are not keeping the configuration space volume c
stant and we are compelled to normalizeP afterwards. This
means thatA(t) is irrelevant and cannot be determined fro
Eq. ~4!. We have already encountered this problem~well
known in quantum field theory! in dense plasma physic
@18#. This raises automatically the consistency of our dev
opments with LTE. Essentially, are Eqs.~5! and~7!–~9! con-
sistent with LTE and, if yes, with which LTE?

In LTE, (Nk) and (Ukl) are known to be given by@23#

Nk5Dkf k ,

f k5
1

11eb~«k2m! , gk512 f k ,

«k5]kEu~Ni !
, Vkl5]kl

2 Eu~Ni !
, ~10!

Ãk
25Dkf kgk ,

Ukl5dkl /Ãk
21bVkl .

When free electrons are supposed to be in LTE among th
selves, one-electron rates obey the detailed balance princ

e2b« it i , j5e2b« jt j ,i ,

e2b~« i2m!I i ,c5Rc,i , ~11!

e2b~«m1« i2m!Ai , j
m,c5e2b« jRj ,i

c,m .

It is thus easy to find that we have a true microreversibi
between one-electron processes for the average-atom
figuration:

Ni~D j2Nj !t i , j5Nj~Di2Ni !t j ,i ,

NiI i ,c5~Di2Ni !Rc,i , ~12!

NiNm~D j2Nj !Ai , j
m,c5~Di2Ni !~Dm2Nm!NjRj ,i

c,m .

These equations are well known but their derivation is by
means straightforward and many assumptions are often o
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looked. The first one is related to the detailed balance p
ciple. In fact, the average-atom configuration has no phys
meaning and the detailed balance principle is valid in
strict sense between configurations. The detailed balanc
lations obeyed by the one-electron rates calculated within
average-atom formalism are no more than a direct con
quence of these general relations. As an example, we
going to derive the one between excitation and deexcita
between configuration (Nk) to configuration (Nk2d ik1d jk)
for the transitioni→ j . Let us start from the exact relation, a
long as the rates are calculated within the avera
configuration framework,

F )
k51

Kmax S Dk

Nk
D Ge2bE@~Nk!#1hS

k51

KmaxNkNi~D j2Nj !t i , j

5F )
k51

Kmax S Dk

Nk2d ik1d jk
D G

3e2bE@~Nk2d ik1d jk!#1h(
k51

Kmax~Nk2d ik1d jk!~Nj11!

3~Di2Ni11!t̄ j ,i ,

and neglecting orbital relaxation. We get

e2bE@~Nk!#t i , j5e2bE@~Nk2d ik1d jk!#t j ,i .

It is clear that if the transition energies are calculated as

E@~Nk2d ik1d jk!#2E@~Nk!#'] jEu~Nk!2] iEu~Nk!5« j2« i ,

the standard detailed-balance relations for the average a
are recovered. This explains that the detailed-balance p
ciple and the way we go from a finite-difference mas
equation to a partial-derivative master equation have to
self-consistently treated. Nothing prevents one from tak
into account higher-order terms in the computation of
transition energy. Yet, one must modify the different
equation~4! as a consequence. If all the rates satisfy
detailed-balance principle, the steady state will be a L
situation in which the average-atom shell occupations w
not be given by Fermi-Dirac relations. The LTE so obtain
will be in between the common ‘‘Fermi-Dirac-like’’ and th
true LTE giving the grand-canonical partition function
configuration space. To end this section, we are going
show now that Eqs.~5! and ~7!–~9! are consistent with the
LTE equations~10!.

If checking the consistency of the NLTE average-ato
equations~5! with the LTE ones is straightforward, the tas
is harder for Eqs.~7!–~9!. Instead of taking the LTE solution
for (Nk) and (Ukl) and injecting them in Eq.~6! or Eqs.
~7!–~9!, a more elegant method consists in writing t
detailed-balance equations for some configuration within
Gaussian ansatz framework, and expanding them aro
(Nk). In our NLTE formalism, these equations read

e2~1/2!DnkUklDnlNi~D j2Nj !t i , j

5e2~1/2!DñkUklDñlNj~Di2Ni !t j ,i ,
1-7
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e2~1/2!DnkUklDnlNi I i ,c5e2~1/2!Dn̂kUklDn̂l~Di2Ni !Rc,i ,
~13!

e2~1/2!DnkUklDnlNiNm~D j2Nj !Ai , j
m,c

5e2~1/2!Dn̂kUklDn̂lNj~Dm2Nm!~Di2Ni !Aj ,i
c,m ,

where DñkUklDñl'DnkUklDnl12Dnk(Uk j2Uki)
~excitation/deexcitation!, Dn̂kUklDn̂l'DnkUklDnl
22DnkUki ~ionization/recombination!, and Dn̂kUklDn̂l
'DnkUklDnl12Dnk(Uk j2Uki2Ukm). When the reference
configuration (Nk) is considered, Eq.~13! leads to Eq.~12!;
by combining it with Eq.~11!, the LTE average-atom equa
tions ~10! are recovered. Let us now expand each right-ha
side and left-hand side terms in Eq.~13! with respect to
(Dnk), and calculate the result for (Nk) at LTE. We obtain
first that

lnS t i , j

t j ,i
D1 lnF Ni

~Di2Ni !
G52Dnk~Uk j2Uki!1 lnF Nj

~D j2Nj !
G ,

lnS I i ,c

Rc,i
D1 lnF Ni

~Di2Ni !
G5DnkUki ,

lnS Ai , j
m,c

Aj ,i
c,mD 1 lnF Ni

~Di2Ni !
G1 lnF Nm

~Dm2Nm!G
52Dnk~Uk j2Uki2Ukm!1 lnF Nj

~D j2Nj !
G .

Using Eq.~11!, we find, as usual, that rates have no mean
and disappear to level space for the one-electron ener
and the chemical potential. After differentiation, the on
remaining quantities are

b~Vki2Vk j!Dnk1
d ik

Ãk
2 Dnk5Dnk~Uki2Uk j!1

d jk

Ãk
2 Dnk ,

bVkiDnk1
d ik

Ãk
2 Dnk5DnkUki ,

b~Vki1Vkm2Vk j!Dnk1
d ik

Ãk
2 Dnk1

dmk

Ãk
2 Dnk

5Dnk~Uki1Ukm2Uk j!1
d jk

Ãk
2 Dnk .

Consequently,Ukl5bVkl1(dkl /Ãk
2) is the unique solution

due to ionization/recombination processes. We find that
NLTE formalism is consistent with LTE for the averag
atom populations (Nk) and for the~inverse! electron covari-
ance matrix (Ukl). This is the mean-field equilibrium with
out corrections resulting from fluctuations of the occupat
probabilities around it@18#.

E. Summary

We have developed a NLTE technique to calculate sta
tical distributions in time-dependent off-equilibrium atom
02640
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physics by taking into account one- and two-electron p
cesses, namely ionization, excitation, autoionization, a
their inverse processes. Starting from a master equation w
ten in the configuration space with average-configurat
rates, we found that the average-atom equations and
evolution of two-electron correlation naturally emerge by a
suming a Gaussian ansatz for the density probability dis
bution of the configurations. By carefully underlying all th
inherent assumptions, we have discussed with which L
our method is consistent, when of course external conditi
make it possible.

III. ATOMIC PHYSICS AND NUMERICAL METHOD

A. Atomic structure

Two different methods can be used in SCAALP to det
mine the average-atom populations (Nk) and the matrix
(Ukl). Atomic structure may be described either with
screened-hydrogenic model includingl splitting @25#, or
with a self-consistent-field approach using the optimize
potential method~OPM! @26#. These models are very simila
conceptually. The screening constants have been fitted to
produce Hartree-Fock ionization potentials and excitat
energies, whereas the optimized potential is the best lo
potential matching Hartree-Fock calculations. In the fi
case, only semianalytic expressions are available for the
cillator strengths, photoionization cross sections, and tra
tion rates for the radiative and collisional excitation, ioniz
tion, and autoionization processes. Since free electrons
assumed to be in LTE, the transition rates of the inve
processes are calculated invoking the detailed balance p
ciple. In the second case, one-electron orbitals are effecti
computed and all the rates may be calculated within
average-configuration framework@14#. However, since we
focus in this work on the role of atomic structure at giv
transition rates and statistical mechanics formalism, o
semianalytic formulas for the transition rates of interest
considered.

B. Transition rates

The Lotz and Mewe formulas are used for the collision
ionization and excitation@27–29#. The corresponding radia
tive rates are computed using the knowledge of the pho
ionization and photoexcitation cross sections and the ra
tion intensity @13,30#. We assume that the radiation fie
does not alter significantly over the line profiles that are
sumed to be Dirac functions. In practice, the radiation field
supposed to be Planckian at some radiation temperatureTr .
However, to allow for a general form for the radiation fiel
the integrals of interest are evaluated numerically by spec
methods. As usual, the rates are in detailed balance when
radiation temperature is equal to the electron tempera
(Tr5Te). Though the energy levels are calculated from t
screened-Coulomb approximation by differentiating the c
figuration energy with respect to shell populations (nk) for
reasons explained in the preceding section, collisional ra
photoexcitation, and photoionization cross sections are
obtained within this approximation. We employ a meth
1-8
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proposed elsewhere to evaluate average-atom bound-b
and bound-free oscillator strengths@31#. This technique en-
sures that one-electron sum rules and the continuum s
are continuously connected. This is a powerful method
studying photoabsorption properties of LTE plasmas but
positive sign of the one-electron photoionization different
oscillator strength was not taken for granted. We then dec
to slightly modify it as follows. The expressions of theDn
Þ0 oscillator strengths and of the differential oscillat
strengths stay unchanged. TheDn50 oscillator strengths
f nl 21,nl are now obtained remembering a simple scaling l
for the radial matrix elementRnl

nl 21 @32#:

Rnl
nl 215 3

2 nAn22 l 2/AZnl Znl 21,

where Znl 21 and Znl are the screened nuclear charges
subshellsnl 21 andnl , respectively. We then assume th
the photoionization differential oscillator strength at thres
old of the partial wavenl →El 21 is proportional to that of
the partial wavenl →El 11. Waiting for more intensive
comparisons with sophisticated atomic calculations, the
efficient is simply taken to be equal to the ratio of the ge
metric factors entering in each partial-wave one-electron s
rule satisfied by oscillator strengths in many-electron ato
in the nonrelativistic regime, namely2 1

3 @ l (2l 21)#/(2l
11) for nl →El 21 and1

3 @(l 11)(2l 13)#/(2l 11) for
nl →El 11. We thus calculate thenl -subshell threshold
photoionization amplitude by using the one-electron s
rule obtained by adding the two aforementioned partial-w
sum rules. For safety, the oscillator strengthf nl 21,nl is re-
placed with tanh(fnl 21,nl ) to manipulate a quantity betwee
zero and unity. In summary, we keep the key idea that c
sists in connecting the discrete spectrum and the contin
series by continuity while satisfying the one-electron s
rules. We have reduced by two the number of equations t
solved to get the threshold photoionization amplitud
(d fk,c /d«), and as a consequence, all the oscillator streng
( f k,k8). Sign problems are not encountered anymore. Mo
over, since these threshold photoionization amplitudes
isfy nothing but a linear system, the differentiation with r
spect to shell populations (nk) is tedious but straightforward
This means that we can calculate quite easily the gradien
any rate with respect to (nk) and obtain the matrix (Ukl)
quickly and with high precision. Fortunately, we can al
take into account the autoionization and dielectronic reco
bination because the autoionization rateAi , j

k,c can be ex-
pressed as follows:

Ai , j
k,c5

3p Ry2

2\Z̄* 2
S « i2« j

Ry
D 2

f i , j

DJ
0

d fk,c

d«
gA ,

where Ry,gA , and D j
0 are the Rydberg constant, a Gau

factor, and the degeneracy of subshellj without density ef-
fects @33#. In practice,gA is chosen equal to 0.2@11,12#. As
explained above, the dielectronic attachmentRj ,i

c,k is simply
deduced fromAi , j

k,c by detailed balance.
As for the self-consistent-field approach, we prefer

keep the aforementioned rates to examine the role of ato
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structure. The rates used from now on are sufficient to st
the shortcomings of the screened hydrogenic model in a
tematic way. For reasons easy to grasp, the analytical for
las for the gradients of the rates with respect to (nk) are very
hard to find due to the self-consistency of the mean-fi
equations. When one population is changed by an infinit
mal amount, complicated reordering occurs within the me
field quantities, inducing intricate response of the on
electron energies and orbitals. Note that the situation
analytically solvable for a parametric potential. In the pres
state of the art, the differentiation of the rates with respec
(nk) is performed numerically. This task is time-consumi
but tractable and induces moderate uncertainties about (Ukl).
It is important to realize that our formalism, like the respon
matrix method@34,35#, is a stringent test of the consistenc
of a NLTE matter model with LTE. To be complete, a Ma
well distribution for the free electrons is used to get the ra
starting from the cross sections of interest. As a con
quence, the average ionization and the chemical potentia
calculated by considering a nondegenerate free-electron
The implementation of free-electron degeneracy, as wel
the continuum lowering and screening phenomena, is d
cult and beyond the scope of this paper.

C. Numerical method

The average-atom equations~5! are very hard to solve for
a wide range of temperature, density, and material for th
main reasons. They are nonlinear with respect to shell po
lations, stiff, and the electroneutrality must always be sa
fied. Even at constant rates, they are quadratic without
electronic recombination and autoionization processes,
cubic when these processes are included. Many attem
have been made to get a robust algorithm while minimiz
the number of times the rates are calculated. We fina
found two different methods that satisfy such severe c
straints.

The first one consists in finding the time evolution
variables (fk) defined by fk5 ln@(Dk2Nk)/Nk#. In other
words, Nk5Dk/(11efk)5Dkf k , and in LTE one has the
well-known result fk5fk

LTE5b(«k2m). In NLTE, it is
very convenient to choose as unknown the deviationDfk

5fk2fk
LTE . Let us note that if Eq.~5! is divided byNi , we

get the time evolution of ln(Ni!. Similarly, if we divide by
Di2Ni@Di2Ni5Di /(11e2f i)5Digi #, the time evolution
of ln(Di2Ni) is obtained. One thus realizes that the tim
evolution of f i is simply found by combining these equa
tions. The final result reads

2ḟ i5Ti
1, ion2Ti

2, ion1Ti
1,rec2Ti

2,rec, ~14!

where

Ti
1, ion5D jgj t̄ i , je

Df i2Df j1 Ĩ i ,ce
Df i

1DmD jgmgjRi , j
c,meDf i2Dfm2Df j

1DmD j f mgjAi , j
m,ceDf i1Dfm2Df j

1D jDmf mgjAm, j
i ,c eDf i1Dfm2Df j ,
1-9
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Ti
2, ion5D jgjt i , j1I i ,c1DmD jgmgjRi , j

c,m

1DmD j f mgjAi , j
m,c1D jDmf mgjAm, j

i ,c ,
~15!

Ti
1,rec5D j f jt j ,i1Rc,i1DmD j f mf jAj ,i

m,c

1DmD jgmf jRj ,i
c,m1D jDmgmf jRj ,m

c,i ,

Ti
2,rec5D j f j t̃ j ,ie

2Df i1Df j1R̃c,ie
2Df i

1DmD j f mf jAj ,i
m,ce2Df i1Dfm1Df j

1DmD jgmf jRj ,i
c,me2Df i2Dfm1Df j

1D jDmgmf jRj ,m
c,i e2Df i2Dfm1Df j .

In LTE, one can see thatTi
1,ion and Ti

1,rec balance, respec
tively, Ti

2, ion and Ti
2,rec. The rates with a tilde are define

from the original rates by imposing detailed balance. Th
can be understood as dual rates. For collisional rates wi
free electron in LTE or radiative rates with the Planck rad
tion field at electron temperature, these dual rates are sim
equal to the usual rates. Equations~14! and ~15! are solved
by starting from a given initial set (fk

0) using an implicit
scheme. (fk) are calculated iteratively at fixed rates. Ne
rates are then obtained. To improve the convergence an
avoid oscillatory problems, the relaxation scheme propo
in @36# has been adopted for variables (fk). At low tempera-
ture, the system is near LTE and it is cautious to cho
fk

05fk
LTE .

The second method consists in dividing Eq.~5! by Ni .
The system is then written by choosing the variableak

5efk. Starting from given (ak
0), we are looking for (ak) of

the formak
n115ak

n(11«k), wheren>0. These («k) satisfy
the linear equationTk,k8«k85Sk , where

Sk5
1

Dt S ak
02ak

11ak
0 D 1I k,c2akRc,k1

Dk8
11ak8

3~ak8tk,k82aktk8,k!2
Dk8

11ak8

Dm

11am

3@akAk8,k
m,c

1akam~Rk8,k
c,m

1Rk8,m
c,k

!2ak8amRk,k8
c,m

2ak8~Ak,k8
m,c

1Am,k8
k,c

!#,

Tkk85dkk8H 1

Dt

ak

11ak
0 1akRc,k1

Dk9
11ak9

aktk9,k1
Dk9

11ak9

3
Dm

11am
@akam~Rk9,k

c,m
1Rk9,m

c,k
!1akAk9,k

m,c
#J 2

Dk8
11ak8

3ak8tk,k81
Dk8

11ak8

Dm

11am
@akak8~Rm,k

c,k81Rm,k8
c,k

!

2ak8am~Rk,k8
c,m

1Rk,m
c,k8!2ak8~Ak,k8

m,c
1Am,k8

k,c
!#.

Dt is the time step. The process is iterated until achiev
convergence: in that case,«k50. In every case, from low
(Te,10 eV) to high (Te.100 eV) electron temperature
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with or without radiation field, rates are calculated at mo
30–50 times. Only stationary NLTE situations are studied
this paper. Nevertheless, both methods can be used to
form time-dependent NLTE calculations. In that case, E
~5! and ~7!–~9! must be solved self-consistently, whereas
stationary problems, Eqs.~5! and ~7!–~9! can be solved one
after the other. Finally, let us note that one needs to diff
entiate the configuration energy, the one-electron energ
and the transition rates with respect to electron populati
to calculate the average-atom populations or the elect
covariance matrix. SHM causes no problem because
whole differentiations can be done exactly. As for OPM, t
one-electron energies and the electrostatic interaction ma
element potentials are obtained by differentiating the aver
energy of the configuration neglecting orbital relaxatio
while the transition rates are differentiated numerically.

IV. RESULTS AND DISCUSSION

In order to illustrate the whole methods, we have chos
to consider the case of a NLTE steady-state german
plasma. From now on, SHM and OPM mean that the ato
structure is calculated by using the screened hydroge
model with l splitting or the optimized potential method
respectively. SCAALP works in LTE or NLTE with the
semianalytic rates presented above. Moreover, wo
~wiDR! means that the calculation of interest has been d
without ~with! autoionization and dielectronic recombinatio
processes. All the computations have been performed wi
maximum principal quantum numbern equal to 8 and an
orbital quantum numberl between 0 andn21. Finally, the
two-parameter degeneracy lowering is the only dense-pla
effect currently modeled in SCAALP@23,33#.

Figure 2 shows the average ionizationZ̄* of a germanium
plasma at 0.0537 g cm23. Calculations were done using th
SHM at three different radiation temperatures:Tr50, Te/2,
and Te~LTE!. As expected,Z̄wiDR* is generally lower than

Z̄woDR* , in particular between 500 and 2000 eV and beyo
10 000 eV, corresponding to the opening ofK and L shells
respectively. Moreover, we confirm that the presence o
moderate radiation field is sufficient to drastically reduce
role of autoionization and dielectronic recombination pr
cesses@12#. Figure 3 presents the ionization variancesZ*

2 of
this plasma in the same thermodynamic conditions. The
sults here are far more interesting. As is well known,sZ*

2 is
maximum for a half-filled shell and reaches its minimu
value near the closure of a shell. Three important facts m
be emphasized. First, without radiation field, large diffe
ences are found beyond 800 eV. Second, the convergen
the NLTE sZ*

2 to LTE values at low temperature is slowe

than Z̄wiDR* and Z̄woDR* . This indicates that the mean ioniza
tion is not a relevant parameter to test the vicinity to LT
SincesZ*

2 is of fundamental interest to estimate the dom
nant charge-stage fractions, one can conclude that
charge-stage distribution is far more sensible to NLTE th
the average ionization. Third, one can see in this exam
that the ionization variance is a key parameter to different
1-10
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two close situations. In Fig. 2, one could infer that the
electronic recombination and the autoionization proces
have a rather small influence when the radiation field w
Tr5Te/2 is present. This remark has to be seriously qu
tioned by inspecting the associated curves of Fig. 3. Inde
interesting physics is also depicted between 60 and 100
Two small structures can be seen on both curves with die

FIG. 2. Average ionizationZ̄* of a NLTE germanium steady
state plasma at 0.0537 g cm23 using a screened hydrogenic mod
@25#. Electron temperatureTe is between 10 and 105 eV. Three
radiation temperaturesTr have been chosen: 0,Te/2, and Te

~LTE!. Dielectronic recombination and autoionization have be
included~wiDR! or suppressed~woDR!.

FIG. 3. Ionization variancesZ*
2 of a NLTE germanium steady

state plasma at 0.0537 g cm23 using a screened hydrogenic mod
@25#. Electron temperatureTe is between 10 and 105 eV. Three
radiation temperaturesTr have been chosen: 0,Te/2, and Te

~LTE!. Dielectronic recombination and autoionization have be
included~wiDR! or suppressed~woDR!.
02640
-
es
h
s-
d,
V.
c-

tronic recombination. They are not calculation artifacts. Ea
local minimum corresponds to the closure of a subsh
namely 3s around 100 eV and 3p around 60 eV. This phe-
nomenon is well known in LTE@23#. The closure of a prin-
cipal shell is far more easy to resolve than the closure o
subshell. Here, it is clear that the presence of dielectro
recombination and autoionization enhances this pheno
enon, but only on the ionization-variance curves beca
nothing noticeable can be detected on the average-ioniza
curves. In NLTE, there is a subtle coupling between atom
physics and statistical mechanics.

To be complete, we mention that we have compared
aforementioned results withsZ*

2 calculated by extending to
NLTE the standard textbook LTE expressions or using
ionization temperature. These two last approximations c
not be derived from general laws of nonequilibrium therm
dynamics. As already encountered@9#, we confirm that they
produce incorrect results.

Let us now study the influence of atomic structure
given transition rates and statistical mechanics formalis
Since the role of dielectronic recombination is more impo
tant without radiation field, we have plotted in Fig. 4 th
average-ionization and the ionization-variance curves us
OPM and SHM withTr50, with or without dielectronic re-
combination and autoionization, forTe between 800 and
15 000 eV. When these two-electron processes are negle
both atomic models are in excellent agreement. When th
processes are taken into account, there is clearly a str
divergence. It is well known that dielectronic recombinatio
and autoionization processes play a central role around
closure~or the opening! of a shell. This is the case here sinc
the range of electron temperatures has been chosen in o

n

n

FIG. 4. Average ionizationZ̄* and ionization variancesZ*
2 of a

NLTE germanium steady-state plasma at 0.0537 g cm23 using a
screened hydrogenic model~SHM! @25# or the optimized potential
method~OPM! @26#. Electron temperatureTe is between 800 and
15 000 eV and the radiation temperatureTr is zero. Dielectronic
recombination and autoionization have been included~wiDR! or
suppressed~woDR!.
1-11
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to see what happens around the opening of theL shell. In
order to understand this phenomenon, we have done
same calculations neglecting the degeneracy-lowering m
of Zimmerman and More@33# used to simulate density ef
fects. The results are gathered in Fig. 5. One can see
OPM and SHM are in very close agreement, with or witho
dielectronic recombination and autoionization process
when the subshell degeneracies are integers. This state
remains true as long as dielectronic recombination and a
ionization processes are suppressed when the subshell d
eracies are fractional. This means that the description
atomic structure and statistical mechanics does not dep
too much of the atomic model in this example. On the co
trary, when dielectronic recombination and autoionizat
processes and density effects are included, one can conc
from Fig. 5 that the computation of average ionization a
ionization variance depends closely on the degeneracy
ering. This can be understood by remembering that
average-configuration autoionization and dielectronic reco
bination rates involve a triple product of subshell degene
cies. Even at such a moderate density, careful atten
should be paid to the treatment of dense plasma effects

Before closing this section, we are going to confro
SCAALP predictions to measurements. To our knowled
the results published recently in Ref.@37# provide the first
accurate determination of the charge-state distribution i
highly ionized high-Z plasma. For a well-characterized A
plasma at an electron density 631020cm23620% and an
electron temperature 2200 eV610%, the average value o
the charge-state distribution isZ̄* 549.360.5. The
superconfiguration-based collisional-radiative codeRIGEL

predictsZ̄* 549.1 with dielectronic recombination and aut
ionization processes@37#. If these two-electron processes a

FIG. 5. Average ionizationZ̄* and ionization variancesZ*
2 of a

NLTE germanium steady-state plasma at 0.0537 g cm23 using a
SHM @25# or the OPM@26#. Electron temperatureTe is between
800 and 15 000 eV and the radiation temperatureTr is zero. Dielec-
tronic recombination and autoionization have been included~wiDR!
or suppressed~woDR!. Calculations have been made with~wiDR!
or without ~woDg! degeneracy lowering to simulate density effec
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not included, the predicted average chargeZ̄* 553.3, far out-
side the range of experimental results. With SHM, SCAA
predictsZ̄woDR* 551.43 andZ̄wiDR* 549.33, whereas OPM pre

dicts Z̄woDR* 549.32. Unfortunately, it was not possible to g

Z̄wiDR* with OPM for lack of convergence of the code in th
specific example. For completeness, ionic abundancies
shown in Fig. 6. SCAALP data are obtained with SHM i
cluding two-electron processes for electron density
31020cm23, Te52200 eV, andTr50 eV. They are com-
pared to charge-state distributions derived from the exp
ment and from theRIGEL code. The peak position and widt
given by our model agree well with the experimental dat

V. CONCLUSION

A new time-dependent self-consistent average-at
model has been presented. The time evolution of avera
atom electron populations and the electron covariance ma
are obtained as approximate solutions of a master equa
Local thermodynamic equilibrium is recovered as a spec
steady-state solution. Autoionization and dielectronic reco
bination enter naturally in the average-atom theory. T
atomic structure can be calculated by using a screened
drogenic model or the optimized potential approach. All t
rates of interest are formulated within the averag
configuration framework. The model has been used to ca
late the mean ionization and the ionization variance o
germanium plasma at moderate density in the LTE a
NLTE steady-state situation. It has also been compared b

.

FIG. 6. Charge-state distribution of a NLTE gold steady-st
plasma at an electron density 631020 cm23, Te52200 eV, andTr

50 eV. Circles with error bars and squares correspond, res
tively, to experimental data andRIGEL code predictions@37#. Stars
are SCAALP results using SHM including dielectronic recombin
tion and autoionization processes.
1-12
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to measurements and to another theoretical model in the
of a NLTE steady-state highly ionized gold plasma.

The next step consists in using accurate transition rate
study their influence on average ionization and ionizat
variance. Indeed, all the formulas of interest are well kno
@14,15#. However, their implementation as robust packag
is not trivial and a great attention has to be paid to numer
problems. The free-electron treatment is another impor
topic. The self-consistent calculation of bound- and fre
m
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electron densities is as crucial as the role of free-elect
degeneracy on the rates to insure the consistency of
whole model with LTE as high density.

ACKNOWLEDGMENTS

The authors thank Dr. J. Albritton and Dr. B. Wilson fo
the approximate autoionization rate formula used in this
per and the helpful comments and explanations.
s,

pec-

,

-

a-

iat.

.
tt.
@1# S. J. Rose, inProceedings of the 45th Scottish University Su
mer School in Physics-Laser Plasma Interactions, edited by
M. B. Hooper~IOP, Bristol, 1995!.

@2# A. Bar-Shalom, J. Oreg, and M. Klapisch, J. Quant. Spectro
Radiat. Transf.58, 427 ~1997!.

@3# A. Bar-Shalom, J. Oreg, W. H. Goldstein, D. Shvarts, and
Zigler, Phys. Rev. A40, 3183~1989!.

@4# M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Rad
Transf.58, 687 ~1997!.

@5# W. A. Lokke and W. H. Grassberger, Report UCRL-5227
Lawrence Livermore Laboratory~Livermore, CA, 1977!.

@6# R. M. More, Report UCRL-84991, Lawrence Livermore N
tional Laboratory~University of California, Livermore, 1981!.

@7# B. F. Rozsnyai, Phys. Rev. E55, 7507~1997!.
@8# P. Dallot, G. Faussurier, A. Decoster, and A. Mirone, Ph

Rev. E57, 1017~1998!.
@9# A. Mirone, F. Gilleron, J. C. Gauthier, and G. Faussurier,

Quant. Spectrosc. Radiat. Transf.60, 551 ~1998!.
@10# R. M. More, G. B. Zimmerman, and Z. Zinamon, in Atom

Processes in Plasmas, edited by A. Hauer and A. L. Merts,
Conf. Proc. No. 168~AIP, New York, 1988!.

@11# J. Albritton and B. G. Wilson, Phys. Rev. Lett.83, 1594
~1999!.

@12# J. Albritton and B. G. Wilson, J. Quant. Spectrosc. Rad
Transf.65, 1 ~2000!.

@13# S. J. Rose, J. Phys. B31, 2129~1998!.
@14# M. S. Pindzola, D. C. Griffin, and C. Bottcher, inAtomic Pro-

cesses in Electron-Ion and Ion-Ion Collisions, edited by F.
Brouillard, Vol. 145 of NATO Advanced Study Institute Serie
B: Physics~Plenum, New York, 1986!.

@15# O. Peyrusse, J. Phys. B32, 683 ~1999!.
@16# A. K. Kerman, S. Levit, and T. Troudet, Ann. Phys.~N.Y.!

148, 436 ~1983!.
@17# J. H. Negele and H. Orland,Quantum Many-Particle System

~Addison-Wesley, New York, 1988!.
-

c.

.

t.

,

.

.

P

.

@18# G. Faussurier, Phys. Rev. E59, 7096~1999!.
@19# F. Perrot, Physica A150, 357 ~1988!.
@20# J. C. Slatter, inA Tribute to E. U. Condon, edited by W. E.

Brittin and H. Odabasi~Colorado Associated University Pres
Boulder, 1971!.
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