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Nonlocal thermodynamic equilibrium self-consistent average-atom model for plasma physics
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A time-dependent collisional-radiative average-atom model is presented to study statistical properties of
highly charged ion plasmas in off-equilibrium conditions. The time evolution of electron populations and the
electron covariance matrix is obtained as approximate solutions of a master equation. Atomic structure is
described either with a screened-hydrogenic model includirsplitting, or by calculating one-electron states
in a self-consistent average-atom potential. Collisional and radiative excitation/deexcitation and ionization/
recombination rates, as well as autoionization and dielectronic recombination rates, are formulated within the
average-configuration framework. Local thermodynamic equilibrium is obtained as a specific steady-state
solution. The influence of atomic structure and the role of autoionization and dielectronic recombination
processes are studied by calculating steady-state average ionization and ionization variance of hot plasmas with
or without radiation field.
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[. INTRODUCTION pations of an electronic configuration, this method consists in
going from integer to fractional occupation numbers and in
The properties of hot dense matter are of great importancealculating all the transition rates of interest affecting the
in astrophysics or laboratory-plasma phydits Their study  configuration under study. The shell-occupation fractional
is often difficult because of the extended range of existingiumbers obey a set of time-dependent nonlinear coupled
thermodynamic situations. An attractive situation takes placequations. The system is closed by using the neutrality con-
when plasmas can be considered in local thermodynamidition. This method seems very attractive and has been re-
equilibrium (LTE). This occurs when collisional processes cently proven to be well-definelB,9]. In short, the master
between ions and electrons are more important than radiaticequation is approximately solved by searching a particular
deexcitation and recombinatigprovided that microrevers- solution of the density probability distribution. This density
ibility prevails in particle collisions Matter is thus assumed probability is assumed to be a Gaussian distribution centered
to be in equilibrium for any pair of temperature densitiesaround a reference configuration. The shell-occupation num-
defined locally in space. Furthermore, the emission and alkers of this configuration and the symmetric matrix, which
sorption coefficients satisfy an equilibrium-type relation. If defines the Gaussian function, satisfy a set of nonlinear
at least one of the above assumptions does not hold, theoupled time-dependent equations that must be solved self-
medium is said to be in nonlocal thermodynamic equilibriumconsistently. The reference configuration appears to be iden-
(NLTE). tical with the heuristic NLTE average-atom configuration
When LTE conditions fail, the problem at hand shows a[5,6], and the Gaussian distribution allows one to estimate
great complexity. Since na priori expressions are available the average value and the standard deviation of any physical
for the electronic configurations, one must resort to findingquantity that is an explicit function of electron shell popula-
the statistical distribution of the different ionic states by solv-tions. Furthermore, the model is shown to match with the
ing the relevant rate equation, or master equation, involvind TE formalism by assuming the principle of detailed bal-
ions, free electrons, and photons. Even if the level of detaiance. This kind of method is surely an important step to-
of the ionic structure does not exceed the configuration dewards improving NLTE atomic-physics models used in-line
scription, the number of selected many-electron configuraer off-line in hydrodynamic codes to simulate laser-plasma
tions can be very large. In this situation, known as the deinteraction experiments. However, up to now nothing clear
tailed configuration accountingDCA) method, data are and of practical interest has been done concerning the ex-
often lacking or known only for isolated atoms or ions. plicit implementation of dielectronic recombination and
One solution is to group levels in configuration sets calledautoionization within the average-atom model formalism.
superconfigurations. Bar-Shalosgt al. [2] have used this The lack of a proper description of these processes has been
kind of statistical approach to take up the NLTE populationa major difficulty in a statistical treatment of dielectronic
kinetic problem in highZ plasmas. They have generalized recombination and autoionizati¢f0]. Taking them into ac-
the LTE supertransition arra¢STA) approach to calculate count would be a major improvement of models employed in
collisional and radiative rates connecting superconfigurationthe context of laboratory-plasma physics.
[3]. However, the basic STA tools, well-defined to perform A simple expression has been recently proposed for these
statistical sums in LTE, are questionable in NLTE each timerates within the screened-hydrogenic mo@&HM) [11,17],
ionization temperature is invokdd]. but its accuracy is still unknown and nothing clear has been
Another solution is to extend the average-atom model fordone about the calculation of the electron covariance matrix.
malism to NLTE situation§5-7]. By taking into account Moreover, most of the average-atom models are based on a
various microscopic processes that can alter the shell occ&HM or use rates calculated by different codés]. The
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internal consistency is problematic and these methods havequation(1) is linear with respect to probabilities but is of-
to be carefully benchmarked. To this end, a NLTE averageten intractable due to the large number of configurations and
atom model is needed in which one-electron states are contransition rates that have to be considered. Nevertheless, it is
puted with self-consistent potential for fractional electron-possible to write its formal solution. Let us first define the
shell populations, rates are expressed within the averageectorP(t),
configuration formalism, and the electron covariance matrix
is calculated self-consistently. To our knowledge, the whole :
problem has never been undertaken. P(t)y=| PL(nW.t] |,
This paper is organized as follows. In Sec. Il, general :
expressions for the NLTE average atom and the electron co-
variance matrix, taking into account recombination and autoand the matrixMv ,
ionization processes, are deduced from a master equation _
written in electronic configuration space. Particular attention ML (nw,(n)1=M[(ng),(nY],
is paid to inherent approximations and shortcomings of the
method. In this section, which is devoted to NLTE statisticalwhere ) # (ny). If we assume that
mechanics, no assumption is made concerning the treatment
of gtomic spr_uctgre. This .is the aim_of _Sec. I, whgre the M[(nk)a(nk)]: _ E ML (), (nY)]
main quantities involved in NLTE kinetics self-consistent- (n)) = (ng)
field calculations, such as atomic structure, average-

configuration energy, one-electron energies, oscillatoft js easy to rewrite Eq(1) a~s|'3(t)=l\7l P(t), which can be

strengths and photoionization cross sections, and transition . R0 o0 .
rates are discussed. In Sec. IV, numerical application'sme(‘:JrateOI to yieldP(t)=e™'P". P" involves the initial

are presented and results are discussed. Section V is tigobabilities at timet=0. M is called the Markov matrix.

conclusion. When this latter is irreducibléhe transition rates are posi-
tive), the zero value is shown to be a nondegenerate eigen-
Il. FORMAL DEVELOPMENTS value and all the other eigenvalues have a negative real part.
In plasma physics, this situation arises when collisional ion-
A. Collisional-radiative model ization and excitation and their inverse procegsedisional

The properties of matter are very difficult to study in "ecombination and deexcitatipare taken into account. Con-

NLTE conditions because the related formalism is not ageduently, P(t) relaxes to the steady-state distribution
strongly settled as in the LTE case. One must resort to usin%: MPS=0. If one needs the Gibbs equilibrium distribu-
approximate techniques to handle a NLTE medium. A wide-+ion defined a$®%to be a steady-state solution of Eda), it
spread method is to estimate the change of probability of g then sufficient that the elements of the maivbxsatisfy the
microscopic state by using the transition rates of the progetailed balance principle:
cesses that can modify it.

Let us consider a one-componeftio mixture highly lT/I[(nk),(n{()]Pe“[(n,’()]zIVI[(n,Q),(nk)]Pe"[(nk)],
charged ion plasma in which the level of detail of the atomic
structure is limited to the DCA approach.is the nuclear where
charge of the element anay) are the electron occupancies
of the K,ax bound orbitals that describe the ion species em- Kmax Dy
bedded in the plasma. Each orbital(1<k<K,,) has a PY(ny]= kﬂl (nk)
degeneracy numb@®, (0<n,<D,). Then we introduce the -
probability of an electronic configuratioR[ (n,),t] and the Here, €k) is a binomial coefficient equal t®,!/[n (D
transition rateM[(n,),(n,)] between configurationsn() koo . .

K —nyY!], »n is related to the chemical potential by 7

and (). P[(n),t] depends on time and satisfies a master_ 11, and 8 is defined bys=1/kgT, whereks is the Bol-

Kmax

e FELI 7 2 i

equation, zmann constant and the electron temperature. The free
_ electrons are supposed to be in thermal equilibrium. They
P[(n.t1== > P[(n),tIM[(ny),(ny)] play the role of a reservoir by allowing exchange of energy

(N # () and particles between bound and free electrons. The detailed
balance principle ensures that each individual process is
+ > P[(n).tIM[(nY),(n)], (1) time-reversible. It can be shown that the detailed balance
(n))#(n principle originates from the reversibility of the microscopic
equations with respect to time. It can be violated if a current
where the dot denotes a differentiation with respect to timeof matter and/or photons is imposed in an open system.
and

D, Dk, B. Self-consistent average-atom model
E = E E . Very often, Eq.(1) is too general to be of practical use
(g m=0 ng, =0 and several assumptions must be introduced to simplify it.
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Major ones consist in considering average-configuratiorironic process. Furthermore, since these processes are two-
rates[14,15 and in taking into account the radiative and electron transitions and induce strong correlations between
collisional processes that change the charge state by at masectron populations, their implementation within the frame-
two units. This methodology suits any other process, but irwork of the average-atom model cannot bypass the simulta-
this paper we will concentrate on the major improvement ofneous consideration of the electron covariance mat@}.
showing how autoionization and dielectronic recombination The derivation is going to be carefully detailed because
naturally enter the average-atom equations and electron cthe inherent approximations are essential to understanding
variance matrix. Usual NLTE average-atom modgds6]  the shortcomings of the equations obtained in the end. More-
leave out both autoionization and its inverse process, thever, we found nothing else, but we mention these approxi-
dielectronic attachment. This fact is known to be a troubleimations to argue that the SCAALP model discussed in this
some limitation for application to low-density highplas- paper, i.e., self-consistent average-atom for laboratory plas-
mas, causing systematic errors in predicted ionization statasas, belongs to a larger class of mean-field descriptions of
and electronic populations. At high enough densities, theN\LTE highly charged ion plasmas. This point recalls the
highly excited electron resulting from dielectronic attach-state of the art in LTE mean-field description of many-
ment is easily removed by collisional ionization and three-particle systems standing on a saddle-point evaluation of an
body recombination is likely to be dominant in any case. Inintegral representation of a partition functiph6—18. By
these conditions, it may be reasonable to ignore the dieledoing so, Eq(1) can be written as

F’[(nk),t]=_i§j: P[(nk)at]ni(Dj_nj)Ti,j_Z P[(nk),t]nili,c—Z PL(NW, R, i(Di— )
o ;
L N RS IO SO N B BTG RS

b n]+1

+2 P n—1] 1 (Di—ni+1)Rgi— > PL(ng),tInm(ni— & ) (D;—nj)ATC
N h],m

—ijEm P[(nk),t](Dm—nm)(Di—nﬁ5i,m)anf,’im+ijEm Pl1 M+l [,t](Dp—np+tl)

X(Di=mi+1+ 8 ) (n+DRY™ > Pl | m=1 | t|(ny+1)(nj+1-8 ) (Dj—n+ DA™, (2

i,j,m

Here, 7, ;,li ¢,R¢i, are the one-electron transition rates of shell j while the other electron of subsheth goes to the
excitation(or deexcitation from subsheli to subshelf, and  continuum.R{:" is the rate of the inverse process. With,

of ionization and recombination involving subshelfespec- R ;, AT¢, andR{", each configuration can be related to
tively. These rates may be radiative or collisiondl, is the  any other configuration by a sequence of at least one-electron
two-electron autoionization rate of the process in which onemicroscopic processes.

of the electron makes the transition from subshet sub- The Markov matrix is irreducible and the charge states are
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not evolving independently of each others because charggeexcitation rate from the configuratiors2p? is written
states are not directly coupled by microscopic processesy, ,; because it is calculated by using the electron popula-
When only the excitation and deexcitation ratgg are kept,  tions of configuration $2p?; Top,2s 1S different from 7, 5

the Markov matrix becomes reducible. The relaxation to-because the latter is calculated with the electron populations
wards equilibrium is nontrivial and the uniqueness of theof the configuration §2s2p.

steady-state solution is not guaranted. An overbar means that To simplify the developments, fractional occupation num-
the corresponding rate is not calculated by using the occupders are used preferentially to integer values. Orbital relax-
tion numbers of the reference configuratian) but those of  ation is assumed to play a minor role for the highly charged
the electronic configuration involved in the specific transi-ion plasmas under study and the “law of great number” is
tion. This point of view of writing the master equation is supposed to be valid. Let us notice that the last assumption is
illustrated on the particular example of thp-2 2s transition  questionable when the subshells are nearly occupied or
(Fig. 1. The reference configuratiom() is 1s2s2p and the  empty[18,19. Equation(2) becomes

P[(nk)vt]:_iEj P[(nk)at]ni(Dj_nj)Ti,j_E P[(nk),t]nili,c—Ei PL(Nw),t]R¢i(Dj—n;)

ni_l : :
+2 P ,t nj(Di_ni)Tj'i‘l‘E P r‘Ii-i-:L 't nili,c+2 P ni_l 1 (Di_ni)RC,i
i . i :

b n]+l

— > P tINgmi(D;—np) A= > P[(ny),t](D = Nin) (D — )R

i,j,m i,j,m

ni—1 n+1
+ 2 Pl | n#+1 [ t|(Dp—nm)(Di—m)mRE™ X P [ nj=1 | t|nyni(D;j—n)ATC. 3
i,j,m : i,j,m : '

n,—1 n,+1

By writing P[(n,),t] as exp—S(ny.t]}, all terms that whole family of mean-field description of matter may be
involve integer changes with respect to occupation numbergbtained. Our method is consistent with existing LTE
are expressed as a Taylor expansio®pfn,),t]. Doing so, average-atom models_and is easy to impleme_nt since the
we just write the master equation, which is a finite-differenceAverage-atom populations and electron covariance matrix
equation in the electronic configuration space, as a partiz:f‘fatISfy un_coupled_ equations, as will be shown later.
differential equation with respect to shell populations. At the. Following previous quk$19’21_23’ we are only IooI§— .
level of approximation retained in this paper, it is sufficient"J fqr a particular solution because_ the master equation is

. L . still difficult to solve exactly, even written as a partial differ-
to expandS[ (ny),t] up to first order. This is equivalent to

dinoP 1in Tavl . q f ential equation of first order with respect to time but of sec-
expandingP[ (i), t] in Taylor series around some re Erence ond order with respect to shell populations. For practical

configu_ration L_Jp_to second order_ by neglecting any se_condépplications, it appears that a Gaussian ansat@ffen,),t],
order differentiation ofy (n,),t] with respect to occupation namely P[(n,),t]~e~ (M2 an®Ua®an® s very well
numbers. For example, the energy differences of Fig. 1 argjieq. The symmetric matrpU(t)] is time-dependent and
ABpsop~AEpspp~ezp—e2s, AE~AEx~—¢e3, and gives an estimate of the electron covariance-matrix:
AEzprEpr —&,p, respectively. Thed) are the first de- (U™ H ) =(An(t)An(t)). (A means the statistical aver-
rivatives of the configuration energy calculated by using theage of the quantityA and An,(t) =n,—N,(t); [Ny(t)] is a
occupation numbers of the reference configurafibsRs2p  still unknown reference configuration. From now on, if no
in our examplég [20]. This point may appear obscure at first ambiguity existsP[(ny),t], [Ny(t)], and[U(t)] are sim-
sight but is perfectly sound and fruitful because the selfply written asP, (N,), and Uy,). Moreover, any index rep-
consistent-field equations found in the end depend on thetition means a sum on the index of interest. Starting from
approximate differential equation written at this stage. AEq. (3), we have(d,=d/dn, andaijz&zl(miﬁnj)
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15 2p° Ls 2p Is2s algebraic manipulations show that the linear termsAim,

T2 Lae Ry, and the quadratic terms idn,An, give the evolution equa-
%2 o | 2B B Ry, 1, | “% tions for the (\,) and the U,,), respectively.
5,2p 4 G258 p,c

As for the evolution equations for the reference configu-
1s2s2p 1s2s2p

. . ration (Ny), we find that
_ T 2p.25 A,E A,E Zp% T\\,h &E’ )
Tasap w2 " o Lo % Ni=N;(Di=Nj) 7 i —=Ni(D;—=Nj)7; ;= Nil; .+ (D;—=N) R

2
1s2s? 1s2s2p 1s25%2p - NmNI(DJ - NJ)AT]YC'F NmNJ(Dl - NI)AT;C
—NiNp(Dj = NjALE + (D= Npy) (D — NpNGRE™

— — —N:)N.R&M

FIG. 1. Example of processes involving subshelisadd 2o of (Dm=Nm)(Dj—=Nj)N;Ry;
the reference conflgy_ratlor§2_52p: (a) bound-bound transmo_r?s, +(D;—N;)(Dy— Nm)NjR}:,’;n, (5)
(b) bound-free transitionsz; ; is the one-electron rate of transition
i—| (excitation or deexcitationl; . andR.; are the one-electron if the matrix (Uy,) is nonsingular. It should be stressed that
ionization and recombination rates associated with the subshell all rates are calculated with the occupation numbakg (In
respectively. The overbar means that the corresponding rate is ngther words, the Ii{,) satisfy the common NLTE average-
calculated by using the reference configuration but the configurationtom equation$5,6,8), as long as autoionization and its in-
involved in the transition of interegtls2p for R; ). The energy  verse process are neglected. However, when these processes

(a) (b)

difference with respect tosPs2p has been mentioned too. are taken into account, they easily enter within the frame-
work of the average-atom model, but in a nontrivial way.
P=[0,P—3P+3 (3;P+d’P—235P)Inj(D;—n;) 7}, Our mean-field equations differ from the work of Rozsnyai
[7] because we have four additional terms, namely the two
+(iP+3 PN o+ (= P+ 5 d7P)(Di— )R, first terms in the second and third lines of E§), which are

absent in the heuristic average-atom equations published by
+[&ip_‘9ip+&mp+% (aﬁp+aﬁp+aﬁ1mp—2aﬁp him recently. There is no reason to suppress them, even if
n Z&isz—Zﬁjsz)]nmni(Dj _ nj)Aimj'C autoioniza_tion may epter with a positive sign gnd. its .inverse
process with a negative one. Indeed, autoionization involves
+[— ;P+9;P—dnP+3 (92P+ 5P+ 3%, P—2d2P  three subshells. One electron of subshetiay go into the
5 5 om contir_luum_while an electron from subshmlgo_es into SL_Jb-
+20{,P=20j;P) (D= nm)(Di—ni) Ry (49 shellj. This process corresponds to the third term in the
) ) ) second line of Eq(5). However, the subshell of interest
We then use P=(N,UgyAn,—3AnUyAn)P, JP  may also be involved in the deexcitation process, hence the
=(—AnU,)P, and (9ﬁ P~(AnUy)(AnUj;)P. Occupa-  presence of the two other terms in the same [ite 12.
tion numbers and rates are developed arouNg) .( After As for the evolution equations for the matrixJ (), we
changing the index and symmetrizing the termaimAn,, obtain the following result;

~ U= (U= Ui (U = Uj)Nj(D; = N 75,1+ U iU [Ni | o+ Re (D3 = N 1+ (Ug = U+ Ugn) (Uj = Uy + Uy
X[NpN;i(Dj = Nj)AT+ (D= Np) (D = N NJRT ]+ (Ui — Uy ) g [Nj (D — Ny 7 11+ (Uj; — Uy g N (D;
=N 75,11 = Ui di [Nl = R i(Di = N 1= Ui il Nili = R i(D; = Nj) 1= (Uji— Uy + U [N N (D — N AT
= (Dm=Nm) (D= N)N;R{™ = (Ui = Uy + Uy L NN (D — N AT = (D= Nip) (D — N NG Ry ). (6)

Equations(5) and(6) are both nonlinear inN,) and U,,) and have to be integrated self-consistently. However, as long as
(Uy)) is nonsingular, Eq(5) does not contain any term irJ¢;). They can thus be solved one after the other. In the most
general case, evolution equations fohJ and U,,) are highly coupled sincel) is present in the equation governing the
time evolution of ().

At this stage, one could think that the problem is solved. In fact, it is known that only the inverse matkik,JfGy,
=(U" Y] has an immediate physical interpretation because it gives an estimate of the electron covariance matrix. Surpris-
ingly, the evolution equations foiQy,) are far more simple since they are linear with respectdg)( These equations are

found from Eq.(6) by using the identity matrix {1 ~*= —M MM ~1). We get

Cru=Biru+ CoakdiV+ C iV, (7)

where
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VM=(DM—NM)RC,M—NM,CJFZi [Ni(DM—NM)Ti’M—N#(Di—Ni)TM’i]-l-iEj [(D;—N;)(D,—N,)N;R")

MR

—NjNM(Di—Ni)ALﬁH—iEj [—(D;—N;)(D;—N)N Rc'j-+NjNi(D#—N#)A{:;]+iEj [(D,—N,)
X(D|_N,)NJRj:"l'u_NMNl(D]_NJ)Am’C (8)
and

BAM:_N)\(D,u_NM)T)\,M_NM(D)\_N)\)T%)\"—Z [NAN,(D;=Nj)AY S+ (D, —Ny)(D,—N,)N; R
+2i [NMN)\(Di—Ni)A‘{"iCJr(DM—N#)(D)\—N)\)NiRﬁ'{‘]—Ei [NiNL(Dy—NyALS

+(Di—N;)(D,,— NM)NAR?L]—Z [NiNA(D,—N,)ALS, +(D;—N;) (D, —Ny)N, RS, |

—Ei [N\N;(D,,—N,)AM+ (D, —N,)(D;— Ni)N#R;‘;ﬁ]—Z [N,N;(Dy—N)A%E+ (D, —N,)(D;— Ny N, R4
)

\
(D,—Nu)Re N, o+ > [N(D,—N,)7 ,+N,(D;i=N)7,;]

“ wlp,c

+Z [(Dj—N;)(D,—NyN;R" +N;N, (D;—N;)AL¢]
6,4 | _ > . (9)
+E] [(Dj—Nj)(D; = N)NyR$ +N;N; (D, — Ny ) AlS

+EJ [(Dy—Ny)(D;=N)N;RM + Ny N; (D — Nj AN
k i

In practical applications, only Eq$5) and (7)—(9) must C. Remarks about the Gaussian ansatz
be solved starting from given initial conditions. Steady-state ¢ mentioned above, the Gaussian ansatz made ferm

spluhon; are olqtamed by saying that any term involving Bhatural trick to find an approximate solution of the master
d|ff_erent|at|on with re_spect to time is null. The (_:hilrge r]eu'equation(4) that is consistent, at least formally, with what
trality of the plasma is ensured by the constraibty"iN« 51 pe found in LTE by replacing the original discrete sum-
+Z*=Z. The average ionizatioZ* is calculated analyti- mation in the grand-canonical partition function with a
cally: Kmaxdimensional integral, using the Stirling formula to ap-
proximate the binomial coefficients, and by developing the
_ Mekg T\ %2 action around its minimum up to second ord28]. If this
VARS In pT(z—th‘) Fa ) Gaussian expression fé¥is well defined in LTE, it is by no
™A means obvious that the probability distribution may not
sometimes have a second maximum in NLTE. There is,
therefore, the danger of extrapolating a quadratic approxima-
tion far from the reference configuratiomNf). One could
integrate the differential equatiof), which looks like a
Faln)= fo dxm. Fokker-Planck equatiof8], to test this assumption on some
specific examples. One could also run intensive benchmark
computations using, for example, the superconfiguration ap-
roach[24].

with

o

A, p, No, andm, are the molar mass, the mass density, th

Avogadro number, and the electron mass. Before closing thi
section, we think it is worthwhile to discuss the following

points: the Gaussian ansatz for the density probability distri-
bution P, its normalization, the consistency of those devel- The second point we want to clarify concerns the normal-
opments with LTE, and the detailed balance. ization of P. By looking for a solution of the form

D. Consistency of SCAALP with LTE and detailed balance
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P[(n,),t]~e” M2ZAnOU®AN®  Eq (4) is in fact looked. The first one is related to the detailed balance prin-
solved for the non-normalized density probability distribu- ciple. In fact, the average-atom configuration has no physical
tion. The normalization factor is easy to find since it is suf-meaning and the detailed balance principle is valid in the
ficient to multiply P by vdetU)/(2m)Xmax to work with a  Strict sense between configurations. The detailed balance re-
density probability distribution normalized to unity. We can lations obeyed by the one-electron rates calculated within the

~A(t)e” V2amOUa®OAM® - where A(t) is some un- duence of these general relations. As an example, we are

going to derive the one between excitation and deexcitation
between configurationN|) to configuration Ny— &+ 6jk)

for the transition — j. Let us start from the exact relation, as
long as the rates are calculated within the average-
configuration framework,

known function. If we inject this expression in E@l), we
find thatA(t) must be time-independent, and if we impdése
to be normalized to unity from the beginningi(t)
= /detU)/(2m)max the only allowed “trajectories” in con-
figuration space are those at constantldgt{This paradox is
easily solved by remembering where E4). comes from. By {

Kmax

Dy
K

using fractional occupation numbers, invoking the “law of

great numbers,” neglecting orbital relaxation, and transform-
ing a finite-difference equation into a differential equation, Ko
we have altered the exactness of the original master equation _ ( Dy )
(2). We are not keeping the configuration space volume con- N [ k=1 | Nik= S+ i

stant and we are compelled to normalRafterwards. This

Kma
eiﬁE[(Nk)]JrnEk:lxNkNi(Dj_ Nj)Ti,j

k=1

means thaA(t) is irrelevant and cannot be determined from x @~ BEL(Nk= ik + )1+ vE:Si“(Nr it 5jk>(Nj +1)
Eqg. (4. We have already encountered this problémell .
known in quantum field theojyin dense plasma physics X(Di=Ni+1)7;,

[18]. This raises automatically the consistency of our devel- ) ) _
opments with LTE. Essentially, are EqS) and(7)—(9) con-  and neglecting orbital relaxation. We get
sistent with LTE and, if yes, with which LTE?

In LTE, (N,) and (U,,) are known to be given bj23] e AELNWI 7 1= @™ AEL(NG dit o] 7y

N =Dfy, It is clear that if the transition energies are calculated as
1 E[(Nk— i+ 80 1 - E[ (N ]~ ,E| (ny— FiE|(ny =& &i s

=T repmem 9=1-f
the standard detailed-balance relations for the average atom

sk=akE|(Ni), Vk|=aﬁ,E|(Ni), (10)  are recovered. This explains that the detailed-balance prin-
ciple and the way we go from a finite-difference master
2_D.f equation to a partial-derivative master equation have to be
@i = DTGk : : !
self-consistently treated. Nothing prevents one from taking
U= 64 /mﬁJr'BVkl_ into account higher-order terms in the computation of the

transition energy. Yet, one must modify the differential

When free electrons are supposed to be in LTE among thengguation(4) as a consequence. If all the rates satisfy the

selves, one-electron rates obey the detailed balance principléétailed-balance principle, the steady state will be a LTE
situation in which the average-atom shell occupations will

e‘/’sirivj:e‘ﬂsirj'i , not be given by Fermi-Dirac relations. The LTE so obtained
will be in between the common “Fermi-Dirac-like” and the
e PEimm; =R, (11)  true LTE giving the grand-canonical partition function in
configuration space. To end this section, we are going to
e—B<8m+si—M>Ainjjv°:e—BSjRJ.C;im_ show now that Eqgs(5) and (7)—(9) are consistent with the

LTE equationg10).
It is thus easy to find that we have a true microreversibility If checking the consistency of the NLTE average-atom
between one-electron processes for the average-atom coegquationg5) with the LTE ones is straightforward, the task

figuration: is harder for Eqs(7)—(9). Instead of taking the LTE solution
for (N, and U,,) and injecting them in Eq(6) or Egs.
N;i(Dj—Nj) 7 j=N;j(D;=Nj) 7 i, (7)—(9), a more elegant method consists in writing the
detailed-balance equations for some configuration within the
Nili c=(Di=NjRg,, (12 Gaussian ansatz framework, and expanding them around

(Ny). In our NLTE formalism, these equations read
NiNm(Dj—Nj)AT = (D;—N;j) (D= Np) N R ™.
e*(l/Z)AnkUHAmNi(Dj _ N]) T J
These equations are well known but their derivation is by no o '
means straightforward and many assumptions are often over- =e~ (W2ANUWANN (D= N;) 7,
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e—(l/Z)Ar‘IkUk|Ar'l|Ni | o= e—(l/Z)AﬁkUk|Aﬁ|(Di _ Ni)Rc,i ,
(13
ei(llz)AnkUklAnlNi Nm(DJ _ NI)A:']:]J,C

=g (V2ANUKANNG (D= Nip) (D = Np AT,

where AN U AT ~An U An +2An0, (U — Uy)
(excitation/deexcitation AfU AR =AU AN,
—2AnU,; (ionization/recombination and AnfU, AR,

~An U An+2An (Uy;— Uy —Uyp) . When the reference

configuration () is considered, Eq.13) leads to Eq(12);

by combining it with Eq.(11), the LTE average-atom equa-
tions (10) are recovered. Let us now expand each right-hand

side and left-hand side terms in E(L3) with respect to
(Any), and calculate the result folN¢) at LTE. We obtain
first that

R e L
In(li—'c +In —i}=AnkUki,
Re.i (Di—Ny)
AMC i
In(AH’“ +1In (Di_INi) +1In (Dm—mNm)}
=—An(Uy— U= Uy +1n (DN%N) :
iT N

PHYSICAL REVIEW B3 026401

physics by taking into account one- and two-electron pro-
cesses, namely ionization, excitation, autoionization, and
their inverse processes. Starting from a master equation writ-
ten in the configuration space with average-configuration
rates, we found that the average-atom equations and time
evolution of two-electron correlation naturally emerge by as-
suming a Gaussian ansatz for the density probability distri-
bution of the configurations. By carefully underlying all the
inherent assumptions, we have discussed with which LTE
our method is consistent, when of course external conditions
make it possible.

I1l. ATOMIC PHYSICS AND NUMERICAL METHOD
A. Atomic structure

Two different methods can be used in SCAALP to deter-
mine the average-atom populationbl, ] and the matrix
(Uy). Atomic structure may be described either with a
screened-hydrogenic model including splitting [25], or
with a self-consistent-field approach using the optimized-
potential methodOPM) [26]. These models are very similar
conceptually. The screening constants have been fitted to re-
produce Hartree-Fock ionization potentials and excitation
energies, whereas the optimized potential is the best local
potential matching Hartree-Fock calculations. In the first
case, only semianalytic expressions are available for the os-
cillator strengths, photoionization cross sections, and transi-
tion rates for the radiative and collisional excitation, ioniza-
tion, and autoionization processes. Since free electrons are

Using Eq.(11), we find, as usual, that rates have no meaning?SSumed to be in LTE, the transition rates of the inverse
and disappear to level space for the one-electron energid§0Cesses are calculated invoking the detailed balance prin-
and the chemical potential. After differentiation, the only CiPle. In the second case, one-electron orbitals are effectively

remaining quantities are

Sik Ojk
BVii— Vi Ang+ — An=An (Uyi—Uy)) + — Any,
W Wy
ik
,BVkiAnk-l— —zAnk:AnkUki,
Wy
Sik Omk
B(ViitVim= Vi An+ — Ang+ — Ang
Wy Wy

Oik
:Ank(Uki+ Ukm_Ukj)+ ;lenk.
k

Consequentlyuk,z,BVk,+(5k,/mﬁ) is the unique solution

due to ionization/recombination processes. We find that ou
NLTE formalism is consistent with LTE for the average-

atom populations,) and for the(inverse electron covari-

ance matrix Uy). This is the mean-field equilibrium with-

computed and all the rates may be calculated within the
average-configuration framewoifl4]. However, since we
focus in this work on the role of atomic structure at given
transition rates and statistical mechanics formalism, only
semianalytic formulas for the transition rates of interest are
considered.

B. Transition rates

The Lotz and Mewe formulas are used for the collisional
ionization and excitatiof27—29. The corresponding radia-
tive rates are computed using the knowledge of the photo-
ionization and photoexcitation cross sections and the radia-
tion intensity [13,30. We assume that the radiation field
does not alter significantly over the line profiles that are as-
sumed to be Dirac functions. In practice, the radiation field is
supposed to be Planckian at some radiation temperature
However, to allow for a general form for the radiation field,
the integrals of interest are evaluated numerically by spectral
methods. As usual, the rates are in detailed balance when the

out corrections resulting from fluctuations of the occupationadiation temperature is equal to the electron temperature

probabilities around if18].

E. Summary

(T,=Tg). Though the energy levels are calculated from the
screened-Coulomb approximation by differentiating the con-

figuration energy with respect to shell populatiomg)(for

reasons explained in the preceding section, collisional rates,

We have developed a NLTE technique to calculate statisphotoexcitation, and photoionization cross sections are not
tical distributions in time-dependent off-equilibrium atomic obtained within this approximation. We employ a method
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proposed elsewhere to evaluate average-atom bound-bousttucture. The rates used from now on are sufficient to study
and bound-free oscillator strengtf&1]. This technique en- the shortcomings of the screened hydrogenic model in a sys-
sures that one-electron sum rules and the continuum seriésmatic way. For reasons easy to grasp, the analytical formu-
are continuously connected. This is a powerful method folas for the gradients of the rates with respectrg) (are very
studying photoabsorption properties of LTE plasmas but thénard to find due to the self-consistency of the mean-field
positive sign of the one-electron photoionization differentialequations. When one population is changed by an infinitesi-
oscillator strength was not taken for granted. We then decidenal amount, complicated reordering occurs within the mean-
to slightly modify it as follows. The expressions of then field quantities, inducing intricate response of the one-
#0 oscillator strengths and of the differential oscillator electron energies and orbitals. Note that the situation is
strengths stay unchanged. Then=0 oscillator strengths analytically solvable for a parametric potential. In the present
fn,—1n, @re now obtained remembering a simple scaling lawstate of the art, the differentiation of the rates with respect to

for the radial matrix elemerﬁ{ﬁf’l [32]: (ny) is performed numerically. This task is time-consuming
. but tractable and induces moderate uncertainties atuby).(
Rﬂ/_lz inyn?-121Vz,,Z,, 1, It is important to realize that our formalism, like the response

matrix method 34,35, is a stringent test of the consistency
whereZ,,_; and Z,, are the screened nuclear charges ofof a NLTE matter model with LTE. To be complete, a Max-
subshelln/'—1 andn/’, respectively. We then assume that well distribution for the free electrons is used to get the rates
the photoionization differential oscillator strength at thresh-starting from the cross sections of interest. As a conse-
old of the partial waven/—E/ — 1 is proportional to that of quence, the average ionization and the chemical potential are
the partial waven/—E/+ 1. Waiting for more intensive calculated by considering a nondegenerate free-electron gas.
comparisons with sophisticated atomic calculations, the coThe implementation of free-electron degeneracy, as well as
efficient is simply taken to be equal to the ratio of the geo-the continuum lowering and screening phenomena, is diffi-
metric factors entering in each partial-wave one-electron suroult and beyond the scope of this paper.
rule satisfied by oscillator strengths in many-electron atoms
in the nonrelativistic regime, namely 3 [/ (2/—1)]/(2/ C. Numerical method
+1) forn/—E/—1 and3 [(/+1)(2/+3)]/(2/+1) for
n/—E/+1. We thus calculate tha/-subshell threshold
photoionization amplitude by using the one-electron su
rule obtained by adding the two aforementioned partial-wav
sum rules. For safety, the oscillator strendith_, , is re-

The average-atom equatio(® are very hard to solve for
nft Wide range of temperature, density, and material for three
(%nain reasons. They are nonlinear with respect to shell popu-

ations, stiff, and the electroneutrality must always be satis-

placed with tantf s, to manipulate a quaniy between of7 T & ST Tt TR AT B L
zero and unity. In summary, we keep the key idea that con- P '

sists in connecting the discrete spectrum and the continuur%UbIC when these processes are included. Many attempts

series by continuity while satisfying the one-electron sumhave been made to get a robust algorithm while minimizing

rules. We have reduced by two the number of equations to b oengutm26:1'f?;rgrr?ter%né?ﬁoé:tfﬁa?;eatpsaf;:uslaﬁd'S(;N:rglré&g:z
solved to get the threshold photoionization amplitudes und two di I u Vv

- traints.
(dfic/ds), and as a consequence, all the oscillator strength§ The first one consists in finding the time evolution of

(fi k). Sign problems are not encountered anymore. More- _ . ) -

over, since these threshold photoionization amplitudes sayariables _@k) defmg:j _by b= LB =NJ/NJ. In other
isfy nothing but a linear system, the differentiation with re- words, Ny =D/(1-+e )_L[T)Ekfk’ and in LTE one has the
spect to shell populationsif) is tedious but straightforward, Well-known result ¢ === (e~ ). In NLTE, it is
This means that we can calculate quite easily the gradient of€"Y corll_\@nlent to choose as unknown the deviatiof,
any rate with respect ton{) and obtain the matrixy,)  — ¢k~ ¢k - Letus note thatif Eq(S) is divided byN; , we
quickly and with high precision. Fortunately, we can also9€t the time evolution of In). Similarly, if we divide by
take into account the autoionization and dielectronic recomPi —Ni[Di—N;j=D;/(1+e"#)=D;g;], the time evolution

bination because the autoionization ra&&¢ can be ex- ©f IN(Di—Nj) is obtained. One thus realizes that the time
pressed as follows: E evolution of ¢; is simply found by combining these equa-

tions. The final result reads

2
A:(’jCZSW_Ry: Si;Sj %d;k,c N _('Jsi:-I—i+,ion_Tif,ion+-|—i+,rec_-|—if,rec, (14)
T 2hZ* y Jg de
where

where Ry,ga, and DjO are the Rydberg constant, a Gaunt . o - »
factor, and the degeneracy of subshelithout density ef- T "=Djgj je %A+ et
fects[33]. In practice,g, is chosen equal to 0[21,12. As 4D, D g REMeA A2,
explained above, the dielectronic attachmﬁﬁf< is simply MEIEmMIIL
deduced fromAiky*jc by detailed balance. + Dijfng.Ai”“jvceA@‘*'A(f’m_AfﬁJ

As for the self-consistent-field approach, we prefer to i,C AAGi+Ady—Ad
keep the aforementioned rates to examine the role of atomic +DjDfmgjAn, e 2 om= 24,
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Ti‘""”:ngj 7ij i o+ DD g RY" with or without radiation field, rates are calculated at most
T 30-50 times. Only stationary NLTE situations are studied in
+D D f @i A+ DD mf @ Ari » this paper. Nevertheless, both methods can be used to per-
(15) form time-dependent NLTE calculations. In that case, Eqs.
T, e Djf;7j,i*+ReitDmD;f Al (5) and(7)—(9) must be solved self-consistently, whereas in
om ci stationary problems, Eq¢5) and(7)—(9) can be solved one
+DmDjgmf iR+ DiDmGmfRjm after the other. Finally, let us note that one needs to differ-
e o AGAG AT Al entiate the configuration energy, the one-electron energies,
Ty T =Djfj7; e 2T+ R, e 0 and the transition rates with respect to electron populations

to calculate the average-atom populations or the electron-

£ £ AMCo—Ad+AdytAd : _
+ DD fmfjAj e 2T 2o covariance matrix. SHM causes no problem because the

+D,Dgy,f REMe™ 24~ Adm+Ad; whole differentiations can be done exactly. As for OPM, the
= "'_ one-electron energies and the electrostatic interaction matrix
+ DD pdmf R e 4417 49m* A0 element potentials are obtained by differentiating the average

_ energy of the configuration neglecting orbital relaxation,
In LTE, one can see thaf'°" and T, "*° balance, respec- while the transition rates are differentiated numerically.
tively, T; " and T; '"*°. The rates with a tilde are defined
from the original rates by imposing detailed balance. They
can be understood as dual rates. For collisional rates with a IV. RESULTS AND DISCUSSION
free electron in LTE or radiative rates with the Planck radia-
tion field at electron temperature, these dual rates are simpl%

equal to the usual rates. Equatiofigl) and (15) are solved

In order to illustrate the whole methods, we have chosen
consider the case of a NLTE steady-state germanium
. . o 0 . -~ plasma. From now on, SHM and OPM mean that the atomic
by starting from a given |n|t|'al Se.tdk) using an implicit structure is calculated by using the screened hydrogenic
scheme. &) are cglculated _|terat|vely at fixed rates. New 401 ith splitting or the optimized potential method,
rates are _then obtained. To improve the convergence and ?spectively. SCAALP works in LTE or NLTE with the
avoid oscillatory problems, the relaxation scheme propose emianalytic rates presented above. Moreover, woDR

in [36] has been adopted for variablesj. Atlow tempera-  \ipR) means that the calculation of interest has been done

ture, ”L]TeE system is near LTE and it is cautious t0 ch00Sgihqt (with) autoionization and dielectronic recombination

b= L processes. All the computations have been performed with a
The second method consists in dividing B8 by Ni.  maximum principal quantum number equal to 8 and an

The system is then written by choosing the variable  gppital quantum number between 0 andi— 1. Finally, the

= ek Starting from given ), we are looking for &) of  two-parameter degeneracy lowering is the only dense-plasma

the form aEH:?fE(lJr &), wheren=0. These §) satisfy  effect currently modeled in SCAALP23,33.
the linear equatio i & = S, where Figure 2 shows the average ionizatioh of a germanium
1 a—a D plasma at 0.0537 gcm. Calculations were done using the
- "_Ok 1l o— R o —— SHM at three different radiation temperaturds:=0, T./2,
At] 1+ It ap and T¢(LTE). As expectedZ;pr is generally lower than
Dy Dp Z».pr» IN particular between 500 and 2000 eV and beyond
X (@ Tk = apTir )) = 77— 10000 eV, corresponding to the openingkofand L shells
1+ Ay 1+ am . .
respectively. Moreover, we confirm that the presence of a
X[ A+ axam(RE T+ REX ) — o a0 moderate radiation field is sufficient to drastically reduce the
e ke role of autoionization and dielectronic recombination pro-
—ap (A AL cesse§12]. Figure 3 presents the ionization varianeg, of
this plasma in the same thermodynamic conditions. The re-
Yk Dy Dy sults here are far more interesting. As is well knowé is
T r:5 r_—+aR + —ay Tyt T g *
OO AL 1400 " TR T 14 g, TR 14 g, maximum for a half-filled shell and reaches its minimum
D D value near the closure of a shell. Three important facts must
X" [ aream(RS™ A+ REE )+ g AT ] — K be emphasized. First, without radiation field, large differ-
1+an ' * * 1+ap ences are found beyond 800 eV. Second, the convergence of
D D the NLTE oé* to LTE values at low temperature is slower
K’ ' i = = o -
X Tk + 77— ﬁ[a’kak'(R?ﬁ,kk +RYL) thanZ¥,,r andZ} or. This indicates that the mean ioniza-
k m tion is not a relevant parameter to test the vicinity to LTE.
— ayr g RE:E+ Rﬁzkm’)_ak’(Akm,ykc’—i_Alr(rfk’)]' Since crg* is of fundamental interest to estimate the domi-

nant charge-stage fractions, one can conclude that the
At is the time step. The process is iterated until achievingcharge-stage distribution is far more sensible to NLTE than
convergence: in that case,=0. In every case, from low the average ionization. Third, one can see in this example
(T.<10eV) to high T.>100eV) electron temperatures, that the ionization variance is a key parameter to differentiate

026401-10



NONLOCAL THERMODYNAMIC EQUILIBRIUM SELF-. .. PHYSICAL REVIEW E 63 026401

IN
. — SHMwoDR
] — LTE 22 E . — SHMwiDR
1 __ woDR 30— . - === OPMwoDR
1. wiDR 25F i OPMwIDR

. Tr=Te/2 ]

IN

10° 10*
10° Te (6V)

Te (eV)

FIG. 4. Average ionizatioZ* and ionization variancei* of a
TE germanium steady-state plasma at 0.0537 gtmmsing a
screened hydrogenic modeHM) [25] or the optimized potential
method(OPM) [26]. Electron temperatur&, is between 800 and
15000 eV and the radiation temperaturg is zero. Dielectronic
recombination and autoionization have been includeidR) or
suppressedwoDR).

FIG. 2. Average ionizatioZ* of a NLTE germanium steady- NL
state plasma at 0.0537 g crusing a screened hydrogenic model
[25]. Electron temperaturd, is between 10 and 2@V. Three
radiation temperature3, have been chosen: O./2, and T,
(LTE). Dielectronic recombination and autoionization have been
included(wiDR) or suppresse@woDR).

two close situations. In Fig. 2, one could infer that the di-
electronic recombination and the autoionization processeonic recombination. They are not calculation artifacts. Each
have a rather small influence when the radiation field withlocal minimum corresponds to the closure of a subshell,
T,=TJ/2 is present. This remark has to be seriously queshamely 3 around 100 eV and 8 around 60 eV. This phe-
tioned by inspecting the associated curves of Fig. 3. Indeediomenon is well known in LTE23]. The closure of a prin-
interesting physics is also depicted between 60 and 100 e\tipal shell is far more easy to resolve than the closure of a
Two small structures can be seen on both curves with dielesubshell. Here, it is clear that the presence of dielectronic
recombination and autoionization enhances this phenom-
enon, but only on the ionization-variance curves because

30 nothing noticeable can be detected on the average-ionization
25¢ E curves. In NLTE, there is a subtle coupling between atomic
20 3 physics and statistical mechanics.
SN LSE A Te=0 E To be complete, we mention that we have compared the
1.0-?— E aforementioned results witbr; calculated by extending to
05 ‘% \ ] NLTE the standard textbook LTE expressions or using the
A N A W T A, — LTE ionization temperature. These two last approximations can-
g:g _ _ . -—woDR  not be derived from general laws of nonequilibrium thermo-
25_5_ 1~ wiDR dynamics. As already encountergd], we confirm that they
i produce incorrect results.
20t E Let us now study the influence of atomic structure at
“'bﬁ’ : Te=Teiz 4 given transition rates and statistical mechanics formalism.
3 Since the role of dielectronic recombination is more impor-
E tant without radiation field, we have plotted in Fig. 4 the
] average-ionization and the ionization-variance curves using

10% 10° OPM and SHM withT, =0, with or without dielectronic re-
combination and autoionization, fof, between 800 and
15000 eV. When these two-electron processes are neglected,
FIG. 3. lonization variance2, of a NLTE germanium steady- both atomic models are in excellent agreement. When these
state plasma at 0.0537 g cfhusing a screened hydrogenic model Processes are taken into account, there is clearly a strong
[25]. Electron temperaturd, is between 10 and 2@V. Three  divergence. It is well known that dielectronic recombination
radiation temperatured, have been chosen: O4/2, and T, and autoionization processes play a central role around the
(LTE). Dielectronic recombination and autoionization have beenclosure(or the openingof a shell. This is the case here since
included(wiDR) or suppressedvoDR). the range of electron temperatures has been chosen in order
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FIG. 5. Average ionizatioZ* and ionization variance, of a 45 48 47 48 43 50 51 52 53 54
NLTE germanium steady-state plasma at 0.0537 gtmmsing a Se As Ge Ga Zn Cu Ni Co Fe Mn
SHM [25] or the OPM[26]. Electron temperatur@&, is between
800 and 15 000 eV and the radiation temperaiiyrés zero. Dielec- Ion charge state

tronic recombination and autoionization have been inclUdeoR) o
or suppressedwoDR). Calculations have been made wiihiDR) FIG. 6. Charge-state distribution of a NLTE gold steady-state

H 0 —3 —
or without (woDg) degeneracy lowering to simulate density effects. Plasma at an electron density<@.0*cm %, To=2200eV, andT,
=0eV. Circles with error bars and squares correspond, respec-

to see what happens around the opening ofltrghell. In  tively, to experimental data arRiGEL code prediction§37]. Stars
order to understand this phenomenon, we have done the SCAALP results using SHM including dielectronic recombina-
same calculations neglecting the degeneracy-lowering mod&pn and autoionization processes.

of Zimmerman and Mor¢33] used to simulate density ef- _

fects. The results are gathered in Fig. 5. One can see thapt included, the predicted average chafge-53.3, far out-
OPM and SHM are in very close agreement, with or withoutside the range of experimental results. With SHM, SCAALP
dielectronic recombination and autoionization processespredictsZ* pr="51.43 andZ’;,,=49.33, whereas OPM pre-

when_ the subshell degen_eracies are integers. 'I_'his statemeyitis * or=49.32. Unfortunately, it was not possible to get
remains true as long as dielectronic recombination and autas;

ionization processes are suppressed when the subshell deg 'DR.fW'th OPN: forFIack of ccl)nvergencg O.f th% coge n this
eracies are fractional. This means that the description ofPecific example. For completeness, lonic abundancies are

atomic structure and statistical mechanics does not deperﬁ?own in Fig. 6. SCAALP data are obtained with SHM in-

too much of the atomic model in this example. On the con® uding two-electron processes for electron density 6

0 —3 — —
trary, when dielectronic recombination and autoionization”™ 10°%cm™, T,=2200eV, andT,=0eV. They are com-

processes and density effects are included, one can conclufi@"ed to dcfharger-]state diSt(;ib“tiﬁ”S derkived from thg e?:jpﬁ”'
from Fig. 5 that the computation of average ionization and™®nt and from t ‘RI'GE'- co e'nT ‘?ﬁeﬁ position an IW' t
ionization variance depends closely on the degeneracy lowfiVen by our model agree well with the experimental data.

ering. This can be understood by remembering that the
average-configuration autoionization and dielectronic recom- V. CONCLUSION
bjnation rates involve a triple product of subshell degene(a— A new time-dependent self-consistent average-atom
cies. Even at such a moderate density, careful attentiog,,qe| has been presented. The time evolution of average-
should be paid to the treatment of dense plasma effects.  ,om electron populations and the electron covariance matrix
Before closing this section, we are going to confronty e ghtained as approximate solutions of a master equation.
SCAALP predlc_t|ons to measurements. To our knO\’Vle‘jgeLocaI thermodynamic equilibrium is recovered as a specific
the results publ|§heq recently in R¢87] provuje t_he _f|rst. steady-state solution. Autoionization and dielectronic recom-
accurate Qetermlnatlon of the charge-state d|str|bgtlon iN Bination enter naturally in the average-atom theory. The
highly ionized highZ plasma. Forogowe!%cilara})ctenzed AU atomic structure can be calculated by using a screened hy-
plasma at an electron densityxd0~cm *+£20% and an  yragenic model or the optimized potential approach. All the
electron temperature 2200eM0%, the average value of (565 of interest are formulated within the average-
the charge-state distribution isZ*=49.3+0.5. The configuration framework. The model has been used to calcu-
superconfiguration-based collisional-radiative COHESEL  |ate the mean ionization and the ionization variance of a
predictsZ* = 49.1 with dielectronic recombination and auto- germanium plasma at moderate density in the LTE and
ionization processd87]. If these two-electron processes are NLTE steady-state situation. It has also been compared both
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to measurements and to another theoretical model in the caséectron densities is as crucial as the role of free-electron

of a NLTE steady-state highly ionized gold plasma. degeneracy on the rates to insure the consistency of the
The next step consists in using accurate transition rates twhole model with LTE as high density.

study their influence on average ionization and ionization

variance. Indeed, all t_he_ formulas of_lnterest are well known ACKNOWLEDGMENTS

[14,15. However, their implementation as robust packages

is not trivial and a great attention has to be paid to numerical The authors thank Dr. J. Albritton and Dr. B. Wilson for

problems. The free-electron treatment is another importarthe approximate autoionization rate formula used in this pa-
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